张海超,张 闯.融合注意力的轻量级行为识别网络研究[J].电子测量与仪器学报,2022,36(5):173-179
融合注意力的轻量级行为识别网络研究
Research on lightweight action recognition network integrating attention
  
DOI:
中文关键词:  3D 卷积神经网络  行为识别  注意力机制  轻量化
英文关键词:3D convolutional neural network  action recognition  attention mechanism  light weight
基金项目:国家自然科学基金(61906097)、江苏省高校优势学科项目资助
作者单位
张海超 1. 南京信息工程大学电子与信息工程学院 
张 闯 1. 南京信息工程大学电子与信息工程学院,2. 江苏省气象探测与信息处理重点实验室 
AuthorInstitution
Zhang Haichao 1. School of Electronic and Information Engineering, Nanjing University of Information Science and Technology 
Zhang Chuang 1. School of Electronic and Information Engineering, Nanjing University of Information Science and Technology,2. Jiangsu Key Laboratory of Meteorological Observation and Information 
摘要点击次数: 1088
全文下载次数: 1304
中文摘要:
      针对传统的三维卷积神经网络存在参数量多、信息冗余和时序信息提取不充分 3 个问题,提出了一种融合注意力的轻 量级行为识别网络。 首先,为轻量化网络参数和融合短中长时序信息,提出了高效残差块来替代两个级联的 3×3×3 卷积;其 次,对通道注意力进行拓展,提出了时间注意力机制,并将两者嵌入在网络中抑制冗余信息对识别结果的影响;最后,在 UCF101 数据集上进行实验验证该网络的有效性。 结果表明,提出的行为识别网络计算成本为 8. 9 GFlops,参数量为 18. 0 M,识别准确 率为 94. 8%,与其他行为识别方法相比,以低成本的计算量实现了较高的识别准确率。
英文摘要:
      A lightweight action recognition network with fused attention is proposed to deal with the three problems of the traditional 3D convolutional neural network: large number of parameters, information redundancy and insufficient extraction of temporal information. First, in order to lighten the network parameters and fuse short-medium-long temporal information, an efficient residual block is developed to replace two cascaded 3×3×3 convolutions; second, by extending the channel attention mechanism, a temporal attention mechanism is derived, and both of the two mechanisms are integrated into the proposed network to suppress the influence of redundant information on recognition results; finally, experiments are conducted on the UCF101 dataset to verify the effectiveness of the network. The results show that the proposed action recognition network has a computational cost of 8. 9 GFlops, a parameter amount of 18. 0 M, and a recognition accuracy rate of 94. 8%, which reveals a high recognition accuracy with a low cost computation in comparison with other behavior recognition networks.
查看全文  查看/发表评论  下载PDF阅读器