李振鹏,董明利,于明鑫,孟凡勇,张羽飞.Encoder-Decoder LSTM 网络的输电
母排触点温度预测方法[J].电子测量与仪器学报,2022,36(4):32-39 |
Encoder-Decoder LSTM 网络的输电
母排触点温度预测方法 |
Transmission busbar contact temperature prediction methodfor Encoder-Decoder LSTM networks |
|
DOI: |
中文关键词: 电力设备 温度预测 深度学习 光纤测温 |
英文关键词:electric power equipment temperature forecast deep learning optical fiber temperature measurement |
基金项目:国家自然科学基金(51675053)项目资助 |
|
Author | Institution |
Li Zhenpeng | 1. Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information
Science & Technology University,2. Beijing Laboratory of Optical Fiber Sensing and System,
Beijing Information Science & Technology University |
Dong Mingli | 1. Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information
Science & Technology University,2. Beijing Laboratory of Optical Fiber Sensing and System,
Beijing Information Science & Technology University |
Yu Mingxin | 1. Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information
Science & Technology University,2. Beijing Laboratory of Optical Fiber Sensing and System,
Beijing Information Science & Technology University |
Meng Fanyong | 1. Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information
Science & Technology University,2. Beijing Laboratory of Optical Fiber Sensing and System,
Beijing Information Science & Technology University |
Zhang Yufei | 1. Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information
Science & Technology University,2. Beijing Laboratory of Optical Fiber Sensing and System,
Beijing Information Science & Technology University |
|
摘要点击次数: 1418 |
全文下载次数: 39354 |
中文摘要: |
机场行李传送装置输电母排触点状态的观测,对减少机场行李传送装置意外停机、保障机场正常运营具有重要的意义。
输电母排触点故障发生时往往伴随温度的上升,温度的变化能够直观反映输电母排触点状态。 因此可以采用编码器-解码器长
短期记忆网络(Encoder-Decoder LSTM)对输电母排触点进行温度预测。 首先采用双向长短期记忆网络(Bi-LSTM)组成的编码
器对母排触点的历史温度数据进行编码,再由长短期记忆网络(LSTM)组成的解码器预测输出输电母排触点未来一段时间的温
度值。 通过对国内某机场行李传送装置一个月的温度观测数据进行测试。 实验结果表明采用 Encoder-Decoder LSTM 的时间序
列预测方法优于传统的时间序列预测模型以及其他现有的深度学习预测模型。 |
英文摘要: |
The observation of transmission busbar contact status of airport baggage transfer device is of great significance to reduce the
unplanned stoppage of airport baggage transfer device and ensure the normal operation of airport. The temperature change can visually
reflect the status of the transmission busbar contact, which is often accompanied by the rise of temperature when the transmission busbar
contact failure occurs. Therefore, Encoder-Decoder LSTM can be used to predict the temperature of transmission bus contacts. First, an
encoder composed of a bi-directional long and short-term memory network (Bi-LSTM) is used to encode the historical temperature data of
the busbar contacts, then a decoder composed of a long and short-term memory network (LSTM) is used to predict the temperature value
of the transmission busbar contacts for a future period. One month of temperature observation data of a domestic airport baggage conveyor
is tested. The experimental results show that the time series prediction method using Encoder-Decoder LSTM outperforms the traditional
time series prediction model as well as other existing deep learning prediction models. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|