张 浩,左 杭,刘宝华.视觉与二维激光雷达的目标检测方法[J].电子测量与仪器学报,2022,36(3):79-86
视觉与二维激光雷达的目标检测方法
Target detection method for visual and 2D laser radar
  
DOI:
中文关键词:  视觉  二维激光雷达  移动机器人  目标检测
英文关键词:vision  2D laser radar  mobile robot  target detection
基金项目:
作者单位
张 浩 1. 燕山大学机械工程学院 秦皇岛,2. 燕山大学河北省并联机器人与机电系统重点实验室 
左 杭 1. 燕山大学机械工程学院 秦皇岛,2. 燕山大学河北省并联机器人与机电系统重点实验室 
刘宝华 1. 燕山大学机械工程学院 秦皇岛,2. 燕山大学河北省并联机器人与机电系统重点实验室 
AuthorInstitution
Zhang Hao 1. School of Mechanical Engineering,Yanshan University,2. Hebei Provincial Key Laboratory of Parallel Robots and Electromechanical Systems,Yanshan University 
Zuo Hang 1. School of Mechanical Engineering,Yanshan University,2. Hebei Provincial Key Laboratory of Parallel Robots and Electromechanical Systems,Yanshan University 
Liu Baohua 1. School of Mechanical Engineering,Yanshan University,2. Hebei Provincial Key Laboratory of Parallel Robots and Electromechanical Systems,Yanshan University 
摘要点击次数: 1228
全文下载次数: 6588
中文摘要:
      为了改进单一传感器对目标物体的检测范围小、检测特征少以及检测准确率较低的问题,提出一种视觉与二维激光雷 达的目标检测方法。 在视觉检测方面提出一种改进的 GoogLeNet 算法实现视觉对目标物体的识别,该方法相比 GoogLeNet 算法 在对 6 种目标物体的识别准确率上提高了 0. 7%。 在二维激光雷达检测方面采用欧氏聚类算法对二维激光雷达的点云数据聚 类,接着使用 RANSAC 算法对聚类簇中的数据点进行筛选,最后使用卡尔曼滤波算法对目标物体的位置进行预测,实现二维激 光雷达在特定平面上 360°对目标物体进行跟踪检测和定位。 实验结果表明,该方法使得移动机器人扩大了检测范围、增加了 检测特征并提高了识别准确率。
英文摘要:
      In order to improve that the detection range of a single sensor is small, the detection features are few and the detection accuracy is low, a target detection method for visual and 2D laser radar is proposed. In terms of visual detection, an improved GoogLeNet algorithm is proposed to realize the visual recognition of target objects. Compared with GoogLeNet algorithm, this method has improved the recognition accuracy of 6 target objects by 0. 7%. In 2D laser radar detection using European clustering algorithm for 2D laser radar point cloud data clustering, and then use RANSAC algorithm for clustering data point in the cluster to filter, finally using Kalman filter algorithm to estimate the location of the target object, and realize the 2D laser radar in a particular plane 360° to detect and locate the target object tracking. Experimental results show that this method can enlarge the detection range, increase the detection features and improve the recognition accuracy of mobile robot.
查看全文  查看/发表评论  下载PDF阅读器