刘一柏,吴 寅,刘文波,刘砚一.基于无线声发射传感器系统的活立木含水率 诊断方法研究[J].电子测量与仪器学报,2022,36(2):160-168
基于无线声发射传感器系统的活立木含水率 诊断方法研究
Research on diagnosis method of standing wood moisture contentbased on wireless acoustic emission sensor system
  
DOI:
中文关键词:  声发射  特征选取  含水率  支持向量机  麻雀搜索算法  活立木
英文关键词:acoustic emission  feature selection  moisture content  support vector machine ( SVM)  sparrow search algorithm ( SSA)  standing tree
基金项目:国家自然科学基金(32171788、31700478)、江苏省政府留学奖学金(JS 2018 043)项目资助
作者单位
刘一柏 1. 南京林业大学信息科学技术学院 
吴 寅 2. 南京航空航天大学自动化学院 
刘文波 1. 南京林业大学信息科学技术学院 
刘砚一 1. 南京林业大学信息科学技术学院 
AuthorInstitution
Liu Yibai 1. College of Information Science and Technology, Nanjing Forestry University 
Wu Yin 2. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics 
Liu Wenbo 1. College of Information Science and Technology, Nanjing Forestry University 
Liu Yanyi 1. College of Information Science and Technology, Nanjing Forestry University 
摘要点击次数: 1119
全文下载次数: 968
中文摘要:
      水分在活立木的生长代谢过程中起着至关重要的作用,实时准确的含水率测量对于立木培育及林木经营具有关键指导 意义。 以无损检测活立木树干含水率为主要目标,设计并实现了一套基于无线声发射传感器网络(WASN)的木材含水率诊断 系统。 首先 WASN 节点高速采样树干表皮的声发射信号,接着计算其特征参数并无线传输至网关,然后采用最大相关最小冗 余(mRMR)判据从中筛选出最优特征组合,并经由麻雀算法优化的支持向量机(SSA-SVM)建立含水率辨识模型,最后即可进行 在线实时的长期监测诊断。 分别在水杉、杨树、松树和山毛榉四类树种上进行了实测,结果表明,诊断准确率最低为 95. 5%,所 设计 WASN 完全具备长期部署观测树木蒸腾作用的功能。
英文摘要:
      Water content plays a crucial role in the growth and metabolism of standing trees. Real-time and accurate measurement of water content is of key guiding significance for standing tree cultivation and forest management. A wood moisture content diagnosis system based on wireless acoustic emission sensor network (WASN) was designed and implemented for the nondestructive testing of living wood. Firstly, the acoustic emission signals of the trunk epidermis were sampled at high speed by the WASN node, and then the characteristic parameters were calculated and transmitted to the gateway wirelessly. After that, the optimal feature combination was selected by the MRMR criterion, and the water content identification model was established by the support vector machine (SSA-SVM) optimized by the sparrow algorithm. Finally, on-line real-time long-term monitoring and diagnosis can be carried out. The system has been tested on four species of met sequoia, poplar, pine and beech respectively, and the results show that the lowest diagnostic accuracy is 95. 5%. The design of WASN was fully capable of long-term observation of tree transpiration.
查看全文  查看/发表评论  下载PDF阅读器