彭道刚,王永坤,周 洋,戚尔江,高义民.基于改进 Faster R-CNN 的电厂雨排口
污染物泄漏检测[J].电子测量与仪器学报,2022,36(2):40-48 |
基于改进 Faster R-CNN 的电厂雨排口
污染物泄漏检测 |
Leakage detection of pollutants at rain drain outlet of powerplant based on improved Faster R-CNN |
|
DOI: |
中文关键词: 监控图像 电厂雨排口 废弃油污泄漏 改进 Faster R-CNN |
英文关键词:monitoring images power plant rainwater outlet waste oil leakage improved Faster R-CNN |
基金项目:上海市“科技创新行动计划”高新技术领域项目(21511101800)、上海市科学技术委员会工程技术研究中心项目(14DZ2251100)资助 |
|
|
摘要点击次数: 615 |
全文下载次数: 993 |
中文摘要: |
针对监控图像中电厂雨排口出现的废弃油污泄漏问题,提出一种基于改进 Faster 区域卷积神经网络(Faster R-CNN)的
电厂雨排口污染物泄漏检测算法。 改进 Faster R-CNN 检测算法首先使用 ResNet-50 作为主干网络,在此基础上构建多尺度特
征图金字塔结构(FPN),实现高层语义和低层语义之间的信息融合,提高了检测精度;其次采用 CIoU 损失和 DIoU-NMS 方法,
提高 Faster R-CNN 中边框回归的准确度;最后引入 Focal Loss 损失函数,解决了区域建议网络(RPN)生成的锚点冗余导致 RCNN 阶段出现正负样本不均衡问题。 实验结果表明,此改进算法在真实样本中表现良好,平均准确率达到 90. 2%,与原 Faster
R-CNN 算法相比较,准确率提高,误报率和漏报率明显下降,可有效应用于实际生产环境中。 |
英文摘要: |
Aiming at the problem of waste oil leakage from power plant rainwater outlets in monitoring images, a pollutant leakage
detection algorithm based on improved Faster R-CNN is proposed. The improved Faster R-CNN detection algorithm first uses ResNet-50
as the backbone network, and builds a multi-scale feature map pyramid structure ( FPN) on this basis to achieve information fusion
between high-level semantics and low-level semantics, and improve detection accuracy; Secondly, the CIoU loss and DIoU-NMS methods
are used to improve the accuracy of bounding box regression in Faster R-CNN; Finally, by introducing Focal Loss function, it solves the
problem of unbalanced positive and negative samples in the R-CNN training stage caused by redundant anchor generated by RPN
network. The experimental results show that the improved algorithm performs well in real samples, and the accuracy rate reaches
90. 2%. Compared with the original Faster R-CNN algorithm, the accuracy rate is improved, and the false positive rate and false
negative rate are significantly reduced. It can be effectively used in the actual environment. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|