罗 钧,庞亚男,刘建强.基于历史认知的鲸鱼算法求解动态能耗[J].电子测量与仪器学报,2022,36(1):236-245
基于历史认知的鲸鱼算法求解动态能耗
Whale algorithm based on historical cognition forsolving dynamic energy consumption
  
DOI:
中文关键词:  能耗管理  动态电压缩放  历史认知  非线性收敛因子  改进鲸鱼算法
英文关键词:energy consumption management  dynamic voltage scaling  historical cognition  nonlinear convergence factor  improved whale algorithm
基金项目:国防科工局十二五技术基础科研项目(JSJL2014209B005)、工信部“两机”重大专项基础研究项目(Z20210208)资助
作者单位
罗 钧 1. 重庆大学光电技术及系统教育部重点实验室 
庞亚男 1. 重庆大学光电技术及系统教育部重点实验室,2. 四川航天电子设备研究所 
刘建强 1. 重庆大学光电技术及系统教育部重点实验室 
AuthorInstitution
Luo Jun 1. Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University 
Pang Yanan 1. Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University,2. Sichuan Aerospace Electronic Equipment Research Institute 
Liu Jianqiang 1. Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University 
摘要点击次数: 388
全文下载次数: 878
中文摘要:
      为提高嵌入式实时系统的能耗管理效率,降低传统动态电压缩放对系统稳定性的影响,提出了基于历史认知的鲸鱼算 法支持下的动态能耗优化方案。 首先提出非线性动态控制收敛因子的策略,有效加快了算法收敛速度。 其次采用历史最优解 作为收缩包围机制中的种群干扰因子,设计了混合引导策略来平衡算法的局部开发和全局搜索能力。 最后根据动态电压缩放 技术可以实时改变处理器频率的特征,利用改进算法对任务量 10、30 和 50 进行优化,验证了改进算法的有效性。
英文摘要:
      In order to improve the energy consumption management efficiency of the embedded real-time system and reduce the impact of traditional dynamic voltage scaling technology on system stability, a dynamic energy consumption optimization scheme supported by whale algorithm based on historical cognition is proposed. Firstly, a nonlinear dynamic convergence factor control strategy is proposed, which can effectively accelerate the convergence speed of the algorithm. Secondly, using the historical optimum solutions as interference factors, a hybrid guided strategy is designed in the constriction and envelopment mechanism to balance the local development and global search capability of the algorithm. Finally, the frequency characteristics of the processor can be changed in real time according to the dynamic voltage scaling technology, the tasks 10, 30 and 50 are optimized by the algorithm, so as to verify the effectiveness of the improved algorithm.
查看全文  查看/发表评论  下载PDF阅读器