焦 静,岳建海,裴 迪.基于 MSK-SVM 的滚动轴承故障诊断方法[J].电子测量与仪器学报,2022,36(1):109-117 |
基于 MSK-SVM 的滚动轴承故障诊断方法 |
Rolling bearing fault diagnosis method based on MSK-SVM |
|
DOI: |
中文关键词: 多尺度核 支持向量机 故障诊断 滚动轴承 |
英文关键词:multi-scale kernel support vector machine fault diagnosis rolling bearing |
基金项目: |
|
|
摘要点击次数: 599 |
全文下载次数: 1008 |
中文摘要: |
针对非线性支持向量机分类准确率受核函数影响的问题,提出一种多尺度核支持向量机( multi-scale kernel support
vector machine,MSK-SVM)分类模型,并将该模型应用于滚动轴承故障诊断。 该模型在常用的多项式核、高斯核和 Sigmoid 核函
数基础上,引入了 Morlet、Marr 和 DOG 小波核函数。 利用不同核函数的全局性和局部性以及核函数尺度参数不同作用范围不
同的特点,组合具有不同特性及不同尺度参数的核函数作为多尺度核。 基于梯度下降法,自适应地确定多尺度核函数权值,得
到 MSK-SVM 滚动轴承故障诊断模型。 为说明算法有效性,分别基于滚动轴承故障数据集和全寿命周期数据集进行了实验验
证,并分析了基于不同特性 MSK 和相同特性 MSK 的 SVM 模型分类性能。 结果表明本文所提模型较传统单个核函数 SVM 分类
准确率更高,且具有良好的泛化能力。 |
英文摘要: |
Aiming at the problem that the classification accuracy of nonlinear support vector machine is susceptible to kernel function, a
multi-scale kernel support vector machine (MSK-SVM) classification model is proposed and applied to rolling bearing fault diagnosis. In
this model, Morlet, Marr and DOG wavelet kernel functions are introduced on the basis of Polynomial, Gaussian and Sigmoid kernels.
Using the global and local characteristics of various kernel functions, as well as the characteristics that kernel functions with different
scale parameters have distinct influence range, kernel functions with different characteristics and scale parameters are combined as multiscale kernel. Based on the gradient descent method, the weights of multi-scale kernel function are adaptively determined, and the
MSK-SVM rolling bearing fault diagnosis models are obtained. In order to illustrate the effectiveness of the algorithm, the rolling bearing
fault data set and life cycle data set are selected for experimental verification, respectively. The classification performance of MSKSVM models based on different characteristic kernel functions and the same characteristic kernel function are analyzed. The results
show that the proposed algorithm can achieve higher classification accuracy and better generalization ability than the traditional single
kernel SVM. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|