刘秀丽,王 鸽,吴国新,李相杰.VMD 及 PSO 优化 SVM 的行星齿轮箱故障诊断[J].电子测量与仪器学报,2022,36(1):54-61
VMD 及 PSO 优化 SVM 的行星齿轮箱故障诊断
Fault diagnosis method of planetary gear box based on variationalmodal decomposition and particle swarmoptimization support vector machine
  
DOI:
中文关键词:  行星齿轮箱  故障特征凸显  PSO 优化 SVM  适应度函数  样本熵
英文关键词:planetary gearbox  variational mode decomposition  particle swarm optimization introduced support vector machine  fitness function  sample entropy
基金项目:国家重点研发计划项目(2020YFB1713203)、北京信息科技大学勤信人才项目(QXTCP C202120)资助
作者单位
刘秀丽 1. 北京信息科技大学现代测控技术教育部重点实验室 
王 鸽 1. 北京信息科技大学现代测控技术教育部重点实验室 
吴国新 1. 北京信息科技大学现代测控技术教育部重点实验室 
李相杰 2. 华锐风电科技(集团)股份有限公司 
AuthorInstitution
Liu Xiuli 1. Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University 
Wang Ge 1. Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University 
Wu Guoxin 1. Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University 
Li Xiangjie 2. Sinovel Wind Power Technology (Group) Co. Ltd. 
摘要点击次数: 486
全文下载次数: 1890
中文摘要:
      以故障高发的行星齿轮传动系统为对象,提出基于变分模态分解( variational mode decomposition, VMD)及粒子群算法 (particle swarm optimization,PSO)优化支持向量机( support vector machine, SVM)的故障诊断方法。 首先,对信号进行 VMD 分 解,采用改进小波降噪的方法处理分解后的本征模态分量(IMF),并对处理后的分量进行重构,凸显信号蕴含的信息;然后,对 处理后的振动信号进行特征提取,分别提取信号的样本熵和均方根误差,并组成输入矩阵;最后,引入 PSO 优化 SVM 的关键参 数,将提取的特征向量输入 PSO-SVM 进行训练和识别。 将该方法应用于行星传动试验平台获取的行星轮裂纹故障、太阳轮轮 齿故障及行星轮轴承故障信号,通过多维比较,验证了该方法的有效性。
英文摘要:
      This paper takes the planetary gear transmission system with high incidence of faults as the object, a fault diagnosis method based on variational mode decomposition (VMD) and particle swarm optimization (PSO) to optimize support vector machine (SVM) is presented. Firstly, the signal is decomposed by VMD, the decomposed components are processed by improved wavelet method, and the processed components are reconstructed to highlight the signal. The weak information of SVM is extracted. Then, the sample entropy and root mean square error of the processed vibration signal are extracted, and the input matrix is formed. Finally, PSO is introduced to optimize the key parameters of SVM, and the extracted eigenvectors are input into PSO-SVM for training and recognition. The method is applied to the planetary gear crack fault, the solar gear tooth fault and the planetary gear bearing fault signal obtained by the planetary transmission test platform. The effectiveness of the method is verified by multi-dimensional comparison.
查看全文  查看/发表评论  下载PDF阅读器