许 敏,李博涵,王 凯,谭守标.特定辐射源个体识别算法研究[J].电子测量与仪器学报,2021,35(10):116-123 |
特定辐射源个体识别算法研究 |
Research on individual identification method of specific emitter |
|
DOI: |
中文关键词: 特定辐射源个体识别 密集连接 注意力机制 指纹特征 |
英文关键词: |
基金项目:国家自然科学基金(61772032)项目资助 |
|
|
摘要点击次数: 424 |
全文下载次数: 1100 |
中文摘要: |
针对特定辐射源个体识别(specific emitter identification,SEI)方法,指纹特征提取需要复杂公式演算推理,特征差异小、
提取困难,提取后特定辐射源个体识别正确率低的问题,提出一种基于密集连接结构与注意力机制的特定辐射源识别算法,称
之为特定辐射源识别网络(specific emitter identification network,SEIN)。 首先使用包络提取算法提取含噪声较少的辐射源信号
包络,得到含有丰富指纹特征的包络图,进而进行 SEIN 指纹特征的提取及个体识别。 实验结果表明,SEIN 可达到 95. 12%的分
类识别效果,具有准确率高、指纹特征提取自动化特点,最终较好实现了复杂环境下特定辐射源个体识别。 |
英文摘要: |
For the specific emitter identification method, fingerprint feature extraction needs complex formula calculus reasoning, the
feature difference is small, the extraction is difficult, and the accuracy of specific emitter identification after extraction is low. In order to
better extract fingerprint features, a specific emitter identification algorithm based on dense connection structure and attention mechanism
is proposed, which is called specific emitter identification network ( SEIN). First, the envelope extraction algorithm is used to extract
the envelope of the radiation source signal with less noise, and an envelope map with rich fingerprint features is obtained, then the SEIN
fingerprint feature extraction and individual recognition are performed. The experimental results show that SEIN can achieve a
classification and recognition effect of 95. 12%, has the characteristics of high accuracy and automatic fingerprint feature extraction, and
finally achieves better specific emitter identification in complex environments. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|