卜迟武,刘 涛,赵 博,李 锐.CFRP / Al 蜂窝结构缺陷红外热图特征的 多结构形态学-PCNN 识别[J].电子测量与仪器学报,2021,35(9):222-228
CFRP / Al 蜂窝结构缺陷红外热图特征的 多结构形态学-PCNN 识别
Recognition of defects in CFRP / Al honeycomb structure bymulti-structure morphology-PCNN
  
DOI:
中文关键词:  CFRP / Al 蜂窝结构缺陷  红外热成像  主成分分析  多结构形态学  PCNN 图像分割
英文关键词:CFRP / Al honeycomb structure defects  infrared thermal imaging  principal component analysis  multi structure morphology  PCNN image segmentation
基金项目:国家自然科学基金面上项目(51775175)、黑龙江省自然科学基金(LH2021E088)、黑龙江省省院合作项目(YS18A18)资助
作者单位
卜迟武 1.哈尔滨商业大学 轻工学院 
刘 涛 1.哈尔滨商业大学 轻工学院 
赵 博 1.哈尔滨商业大学 轻工学院 
李 锐 1.哈尔滨商业大学 轻工学院 
AuthorInstitution
Bu Chiwu 1.School of Light Industry, Harbin University of Commerce 
Liu Tao 1.School of Light Industry, Harbin University of Commerce 
Zhao Bo 1.School of Light Industry, Harbin University of Commerce 
Li Rui 1.School of Light Industry, Harbin University of Commerce 
摘要点击次数: 575
全文下载次数: 959
中文摘要:
      CFRP / Al 蜂窝结构在制备和长期服役过程中易产生脱粘、分层、积水等缺陷,因此采用红外热波无损检测技术对其状 态进行检测尤为重要。 在采集 CFRP / Al 蜂窝结构缺陷红外热图像序列的过程中,存在着较大的背景噪声,容易产生对缺陷的 检测效率低、对比度差等问题。 为了提高缺陷检测效果,采用主成分分析算法对去除背景后的红外图像序列进行缺陷特征信息 降维处理,有效滤除红外图像序列中的不均匀背景噪声。 结合多结构形态学和脉冲耦合神经网络(PCNN)混合算法对缺陷区 域进行图像增强和图像分割来提取缺陷区域。 实验结果表明,采用上述方法,能够进一步地滤除红外图像的不均匀背景噪声, 改善缺陷区域提取效果,有效提高缺陷检出率。
英文摘要:
      In the process of preparation and long-term service, CFRP / Al honeycomb structure is prone to debonding, delamination, ponding and other defects, so it is very important to detect its state by infrared thermal wave nondestructive testing technology. And In the process of collecting the infrared thermal image sequence of CFRP / Al honeycomb structure defects, there is a large background noise, which easily leads to low detection efficiency and poor contrast. In order to improve the defect detection effect, principal component analysis (PCA) algorithm is used to reduce the dimension of defect feature information of the infrared image sequence after background removal, which can effectively filter out the uneven background noise in the infrared image sequence. Combined with multistructure morphology and PCNN hybrid algorithm, the defect area is extracted by image enhancement and image segmentation. The experimental results show that the proposed method can further filter out the uneven background noise of the infrared image, improve the defect area extraction effect, and effectively improve the defect detection rate.
查看全文  查看/发表评论  下载PDF阅读器