程 亮,杨 渊,张云飞,林德群,杨春利,杨士远,王磊刚,何赟泽.面向无人艇智能感知的水上目标识别算法研究[J].电子测量与仪器学报,2021,35(9):99-104
面向无人艇智能感知的水上目标识别算法研究
Research on water target recognition algorithm for unmanned surface vessel
  
DOI:
中文关键词:  无人艇  目标检测  YOLO
英文关键词:USV  object detection  YOLO
基金项目:云洲研发项目(YZ LX0A1 820)资助
作者单位
程 亮 1. 江苏海洋大学 海洋工程学院,2. 珠海云洲智能科技有限公司 
杨 渊 3. 湖南大学 电气与信息工程学院 
张云飞 1. 江苏海洋大学 海洋工程学院,2. 珠海云洲智能科技有限公司 
林德群 4. 中国人民解放军 63983 部队 
杨春利 2. 珠海云洲智能科技有限公司 
杨士远 2. 珠海云洲智能科技有限公司 
王磊刚 2. 珠海云洲智能科技有限公司 
何赟泽 3. 湖南大学 电气与信息工程学院 
AuthorInstitution
Cheng Liang 1. School of Ocean Engineering, Jiangsu Ocean University,2. Zhuhai Yunzhou Intelligent Technology Co. , Ltd 
Yang Yuan 3. College of Electrical and Information Engineering, Hunan University 
Zhang Yunfei 1. School of Ocean Engineering, Jiangsu Ocean University,2. Zhuhai Yunzhou Intelligent Technology Co. , Ltd 
Lin Dequn 4. Unit 63983 of PLA 
Yang Chunli 2. Zhuhai Yunzhou Intelligent Technology Co. , Ltd 
Yang Shiyuan 2. Zhuhai Yunzhou Intelligent Technology Co. , Ltd 
Wang Leigang 2. Zhuhai Yunzhou Intelligent Technology Co. , Ltd 
He Yunze 3. College of Electrical and Information Engineering, Hunan University 
摘要点击次数: 1406
全文下载次数: 1727
中文摘要:
      针对水面无人艇(unmanned surface vessel, USV)智能感知系统对图像处理过程的准确性和实时性要求,研究了一种根 据无人艇上机载视觉传感器对水上目标进行识别与定位的算法。 首先根据开源数据集与实验数据采集图像,对实验数据抽帧、 去重、标注、统计,创建了水上目标识别数据库 YZ10K;其次实践了主流的基于深度学习的目标检测方法,包括 Faster R-CNN、 SSD、YOLOv3 等;最后针对水上目标特点,提出了一种基于改进 YOLOv3 的增强型轻量级水上目标检测网络 WT-YOLO(water target-you only look once)。 无人船实验验证表明,WT-YOLO 算法取得了准确且快速的目标识别效果,平均精度为 79. 30%,处理 速度为 30. 01 fps。
英文摘要:
      In this paper, a water-target recognition algorithm based on the data acquired by the onboard visual sensor from unmanned surface vessels (USV) is reported, in order to satisfy the accuracy and speed requirements of USV intelligent sensing system. The main outcome are summarized as follows: First, images are collected based on open source datasets and experimental data, to create a watertarget recognition database which named YZ10K; second, popular deep-learning based target detection methods including Faster RCNN, SSD, YOLOv3, etc. are implemented and compared; third, based on the characteristics of water targets, an enhanced lightweight Water Target detection network WT-YOLO (water target-YOLO) is proposed. The experimental verification shows that the WT-YOLO algorithm based on improved YOLOv3 has achieved accurate and real-time target recognition with the mean average precision (mAP) of 79. 30% and frame per second of 30. 01.
查看全文  查看/发表评论  下载PDF阅读器