朱江艳,马 军,杨创艳,李 祥,刘桂敏.基于 FastICA-BAS-MCKD 的滚动轴承 复合故障特征提取方法[J].电子测量与仪器学报,2021,35(8):107-117
基于 FastICA-BAS-MCKD 的滚动轴承 复合故障特征提取方法
Compound fault feature extraction method of rolling bearingbased on FastICA-BAS-MCKD
  
DOI:
中文关键词:  复合故障  盲源分离  天牛须算法  最大相关峭度解卷积
英文关键词:compound fault  blind source separation  beetle antennae search algorithm  maximum correlated kurtosis deconvolution
基金项目:国家自然科学基金(51765002,61663017)、云南省科技厅科技计划项目(2019FD042)资助
作者单位
朱江艳 1. 昆明理工大学 信息工程与自动化学院,2. 云南省人工智能重点实验室 
马 军 1. 昆明理工大学 信息工程与自动化学院,2. 云南省人工智能重点实验室,3. 云南省矿物管道输送过程技术研究中心 
杨创艳 1. 昆明理工大学 信息工程与自动化学院,2. 云南省人工智能重点实验室 
李 祥 1. 昆明理工大学 信息工程与自动化学院,2. 云南省人工智能重点实验室 
刘桂敏 1. 昆明理工大学 信息工程与自动化学院,2. 云南省人工智能重点实验室 
AuthorInstitution
Zhu Jiangyan 1. Faculty of Information Engineering and Automation,Kunming University of Science and Technology,2. Key Laboratory of Artificial Intelligence of Yunnan Province 
Ma Jun 1. Faculty of Information Engineering and Automation,Kunming University of Science and Technology,2. Key Laboratory of Artificial Intelligence of Yunnan Province,3. Engineering Research Center for Mineral Pipeline Transportation of Yunnan Province 
Yang Chuangyan 1. Faculty of Information Engineering and Automation,Kunming University of Science and Technology,2. Key Laboratory of Artificial Intelligence of Yunnan Province 
Li Xiang 1. Faculty of Information Engineering and Automation,Kunming University of Science and Technology,2. Key Laboratory of Artificial Intelligence of Yunnan Province 
Liu Guimin 1. Faculty of Information Engineering and Automation,Kunming University of Science and Technology,2. Key Laboratory of Artificial Intelligence of Yunnan Province 
摘要点击次数: 676
全文下载次数: 1041
中文摘要:
      针对强背景噪声下轴承复合故障特征难以分离提取的问题,提出了一种基于快速独立成分分析-天牛须-最大相关峭度 解卷积算法(FastICA-BAS-MCKD)的滚动轴承复合故障特征提取方法。 首先,引入 FastICA 对滚动轴承多通道故障信号进行盲 源分离;其次,利用 BAS 算法同步优化 MCKD 算法的解卷积周期 T、滤波器长度 L 和移位数 M,构建基于 BAS-MCKD 的滚动轴 承振动信号自适应分析方法;然后,应用 BAS-MCKD 方法处理分离后的信号,实现分离信号的降噪和特征增强;最后,应用希尔 伯特解调方法对 MCKD 处理后的信号进行包络谱分析,实现滚动轴承不同类型故障的识别。 仿真和实测信号的分析结果表 明,所提方法能清晰地从复合故障信号中提取出单一故障特征频率,为滚动轴承复合故障特征提取提供了一种有效的解决 方案。
英文摘要:
      Aiming at the problem that bearing composite fault features are difficult to be separated and extracted under strong background noise, a new compound faults diagnosis method is proposed in this paper based on fast independent component analysis ( FastICA), beetle antennae search algorithm ( BAS) and maximum correlated kurtosis deconvolution ( MCKD). Firstly, FastICA method is introduced for blind separation of rolling bearing multi-channel fault signals. Secondly, the deconvolution period T, filter length L and shift number M of the deconvolution algorithm for MCKD are simultaneously optimized by using BAS. Then an adaptive analysis method based on BAS-MCKD for vibration signal of rolling bearing is constructed to achieve noise reduction and feature enhancement of separated signals. Finally, the Hilbert demodulation method is used to analyze the envelope spectrum of the signal processed by MCKD to realize the identification of different types of rolling bearing faults. The analysis results of simulation and measured signals show that the proposed method can clearly extract the single fault characteristic frequency from the composite fault signal, which provides an effective solution for the complex fault characteristic extraction of rolling bearing.
查看全文  查看/发表评论  下载PDF阅读器