黄 静,廉小亲,陈彦铭,刘 钰,龚永罡,霍亮生.基于 OLS 法及改进 LM 法的 ICP-AES 非线性标准曲线拟合方法研究[J].电子测量与仪器学报,2021,35(8):99-106
基于 OLS 法及改进 LM 法的 ICP-AES 非线性标准曲线拟合方法研究
Research on nonlinear standard curve fitting method of ICP-AES basedon OLS algorithm and improved LM algorithm
  
DOI:
中文关键词:  ICP-AES  改进 LM 算法  OLS 法  非线性标准曲线
英文关键词:ICP-AES  improved LM Algorithm  OLS algorithm  nonlinear standard curve
基金项目:国家自然科学基金(61807001)项目资助
作者单位
黄 静 1. 北京工商大学 人工智能学院,2. 北京工商大学 中国轻工业工业互联网与大数据重点实验室 
廉小亲 1. 北京工商大学 人工智能学院,2. 北京工商大学 中国轻工业工业互联网与大数据重点实验室 
陈彦铭 1. 北京工商大学 人工智能学院,2. 北京工商大学 中国轻工业工业互联网与大数据重点实验室 
刘 钰 1. 北京工商大学 人工智能学院,2. 北京工商大学 中国轻工业工业互联网与大数据重点实验室 
龚永罡 1. 北京工商大学 人工智能学院,2. 北京工商大学 中国轻工业工业互联网与大数据重点实验室 
霍亮生 1. 北京工商大学 人工智能学院,2. 北京工商大学 中国轻工业工业互联网与大数据重点实验室 
AuthorInstitution
Huang Jing 1. School of Artificial Intelligence, Beijing Technology and Business University, 2. China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University 
Lian Xiaoqin 1. School of Artificial Intelligence, Beijing Technology and Business University, 2. China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University 
Chen Yanming 1. School of Artificial Intelligence, Beijing Technology and Business University, 2. China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University 
Liu Yu 1. School of Artificial Intelligence, Beijing Technology and Business University, 2. China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University 
Gong Yonggang 1. School of Artificial Intelligence, Beijing Technology and Business University, 2. China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University 
Huo Liangsheng 1. School of Artificial Intelligence, Beijing Technology and Business University, 2. China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University 
摘要点击次数: 719
全文下载次数: 995
中文摘要:
      针对电感耦合等离子体原子发射光谱法( ICP-AES)分析过程中出现的元素浓度-光强关系的非线性标准曲线,提出基 于正交最小二乘法(OLS)及改进 LM(Levenberg-Marquardt)算法的标准曲线拟合方法,以实现元素浓度的准确分析。 采用二次 多项式、三次多项式、Limbek 表达式、Lwin 表达式作为标准曲线的非线性模型,以适用不同数据的分布特点。 依据各表达式在 拟合过程中的损失函数特性,对二次、三次多项式利用 OLS 法计算其最优拟合参数,对 Limbek、Lwin 表达式利用改进 LM 法得 到其最优拟合参数,实现标准曲线的拟合。 针对 Sb、Cd、Sn、Mo、Ni、Ba 元素的一系列不同浓度标准样品的光强实测数据,进行 上述方法的标准曲线拟合实验。 实验结果表明,各元素的浓度-光强数据均可拟合得到决定系数在 0. 999 以上的非线性标准曲 线,且标准曲线对于已知数据点的拟合浓度的相对误差均在±5%。
英文摘要:
      Aiming at the non-linear standard curve of the relationship between concentration and light intensity in the ICP-AES analysis process, a standard curve fitting method based on the OLS algorithm and the improved LM algorithm is proposed to realize the accurate analysis of element concentration. Quadratic polynomial, cubic polynomial, limbek expression and Lwin expression are used as the nonlinear model of the standard curve to suit the distribution characteristics of different data. According to the loss function characteristics of each expression in the fitting process, the OLS algorithm is used to calculate the optimal fitting parameters of quadratic and cubic polynomials, and the improved LM algorithm is used to obtain the optimal fitting parameters of limbek and Lwin expressions, so as to realize the fitting of standard curve. The light intensity measured data of a series of standard samples with different concentrations of Sb, Cd, Sn, Mo Ni and Ba elements are used to carry out the standard curve fitting experiment of the above method. The experimental results show that the concentration-light intensity data of each element can be fitted to obtain a nonlinear standard curve with a R 2 above 0. 999, and the relative error of the fitted concentration of the standard curve to the known data points is within ±5%.
查看全文  查看/发表评论  下载PDF阅读器