王 涛,鲁昌华,孙怡宁,蒋文钢.多尺度卷积神经网络检测睡眠呼吸暂停[J].电子测量与仪器学报,2021,35(7):30-35 |
多尺度卷积神经网络检测睡眠呼吸暂停 |
Multi-scale convolutional neural network for sleep apnea detection |
|
DOI: |
中文关键词: 多尺度 卷积神经网络 睡眠呼吸暂停 RR 间隔 R 峰信号 |
英文关键词:multi-scale convolutional neural network sleep apnea RR intervals R-peaks signal |
基金项目:中科院STS重大项目(KFJ STS ZDTP 079)资助 |
|
|
摘要点击次数: 472 |
全文下载次数: 1597 |
中文摘要: |
睡眠呼吸暂停综合征作为一种常见的与睡眠相关的呼吸障碍性疾病,受到众多的关注。 由于其复杂的检诊断过程及昂
贵的价格,吸引了众多研究学者探索基于单通道信号的快速、便捷检测方法。 基于心电信号(ECG)提出了一种多尺度卷积神经
网络睡眠呼吸暂停快速检测方法,与常规的单尺度卷积神经网络方法相比,该方法可以有效地结合信号的细节信息和抽象信
息,提升卷积神经网络的特征呈现能力。 通过 PhysioNet 提供的 Apnea-ECG 数据库进行验证,多尺度卷积神经网络获得了
85. 2%准确率、83. 1%敏感性和 86. 5%特异性。 与现有方法相比,该方法进一步提升了睡眠呼吸暂停的检测性能。 |
英文摘要: |
Sleep apnea syndrome, as a common sleep-related respiratory disorder, has gained a lot of attention. Due to its complicated
diagnosis process and high price, it has attracted many researchers to explore fast and convenient detection methods based on singlechannel signals. The research proposes a multi-scale convolutional neural network method for rapid detection of sleep apnea based on
ECG signals. Compared with the traditional single-scale convolutional neural network, the method can effectively combine the detailed
and abstract information of the signal, and improve the feature representation ability of the convolutional neural network. By verifying on
the Apnea-ECG database provided by PhysioNet, the proposed multi-scale convolutional neural network obtains an accuracy of 85. 2%,
sensitivity of 83. 1% and specificity of 86. 5%. Compared with existing methods, the method further improves the performance of sleep
apnea detection. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|