李建良,张婷婷,陶知非,李淑清,郭秋蕊.基于改进 Camshift 与 Kalman 滤波 融合的领航车辆跟踪算法[J].电子测量与仪器学报,2021,35(6):131-139
基于改进 Camshift 与 Kalman 滤波 融合的领航车辆跟踪算法
Pilot vehicle tracking algorithm based on improvedCamshift and Kalman filter fusion
  
DOI:
中文关键词:  领航车辆跟踪  Camshift 算法  Bhattachayya 系数  Kalman 滤波  边缘梯度
英文关键词:pilot vehicle tracking  Camshift algorithm  Bhattachayya coefficient  Kalman filter  edge gradient
基金项目:
作者单位
李建良 1. 天津科技大学 电子信息与自动化学院 
张婷婷 1. 天津科技大学 电子信息与自动化学院 
陶知非 2. 中国石油集团 东方地球物理勘探有限责任公司 
李淑清 1. 天津科技大学 电子信息与自动化学院 
郭秋蕊 1. 天津科技大学 电子信息与自动化学院 
AuthorInstitution
Li Jianliang 1. College of Electronic Information and Automation, Tianjin University of Science and Technology 
Zhang Tingting 1. College of Electronic Information and Automation, Tianjin University of Science and Technology 
Tao Zhifei 2. Bureau of Geophysical Prospecting INC, China National Petroleum Corporation 
Li Shuqing 1. College of Electronic Information and Automation, Tianjin University of Science and Technology 
Guo Qiurui 1. College of Electronic Information and Automation, Tianjin University of Science and Technology 
摘要点击次数: 314
全文下载次数: 5
中文摘要:
      针对智能车辆在对前方领航车辆进行视觉跟踪时,传统的 Camshift 算法容易受目标突然变速、相似颜色背景或目标干 扰的问题,提出一种基于改进 Camshift 与 Kalman 滤波融合的领航车辆跟踪算法。 该算法通过提取目标模板的色度、饱和度和 Canny 边缘梯度幅值 3 个特征分量,建立三维直方图并对其反向投影进行跟踪,同时采用 Bhattachayya 系数作为目标跟踪准确 性的判别依据。 若系数大于设定阈值则判定目标跟踪不准确,此时用局部二值模式(LBP)级联分类器对领航车辆进行检测识 别,最后引入 Kalman 滤波器来预测下一帧领航车辆的位置。 实验结果表明,该算法能够在复杂背景下对领航车辆进行实时并 有效的跟踪。
英文摘要:
      Aiming at the problem that the traditional Camshift algorithm is susceptible to the sudden acceleration and deceleration of the target and the background or the target interference of the similar colors when the intelligent vehicle is visually tracking the pilot vehicle in front, a pilot vehicle tracking algorithm that combines the improved Camshift and Kalman filter was proposed. The algorithm tracked the back projection of the three-dimensional histogram established by the target template hue, saturation, and edge gradient amplitude feature components. The Bhattachayya coefficient was used as the basis for determining the accuracy of target tracking. If the coefficient was greater than the set threshold, the target tracking would be judged to be inaccurate. At this time, the LBP cascade classifier was used to detect and recognize the pilot vehicle, and finally the Kalman filter was introduced to predict the position of the pilot vehicle in the next frame. The experimental results demonstrate that the proposed algorithm can accurately track the pilot vehicle in real time in a complex background.
查看全文  查看/发表评论  下载PDF阅读器