舒子超,曹松晓,谢代梁,徐志鹏,刘铁军,徐 雅.基于三维视觉特征的数字手势语义识别新方法研究[J].电子测量与仪器学报,2021,35(6):124-130
基于三维视觉特征的数字手势语义识别新方法研究
Research on a new method of digital gesture semanticrecognition based on 3D visual features
  
DOI:
中文关键词:  3D 视觉  手势分割  手势特征参数  数字手势  手势识别
英文关键词:3D vision  gesture segmentation  gesture feature parameters  digital gesture  gesture recognition
基金项目:
作者单位
舒子超 1.中国计量大学 计量测试工程学院 
曹松晓 1.中国计量大学 计量测试工程学院 
谢代梁 1.中国计量大学 计量测试工程学院 
徐志鹏 1.中国计量大学 计量测试工程学院 
刘铁军 1.中国计量大学 计量测试工程学院 
徐 雅 1.中国计量大学 计量测试工程学院 
AuthorInstitution
Shu Zichao 1.College of Metrology and Measurement Engineering, China Jiliang University 
Cao Songxiao 1.College of Metrology and Measurement Engineering, China Jiliang University 
Xie Dailiang 1.College of Metrology and Measurement Engineering, China Jiliang University 
Xu Zhipeng 1.College of Metrology and Measurement Engineering, China Jiliang University 
Liu Tiejun 1.College of Metrology and Measurement Engineering, China Jiliang University 
Xu Ya 1.College of Metrology and Measurement Engineering, China Jiliang University 
摘要点击次数: 429
全文下载次数: 5
中文摘要:
      为了解决现有手势识别易受背景噪声干扰和算法较为复杂的问题,提出一种基于 3D 视觉的数字手势语义识别方法。 首先,通过 RealSense 3D 相机采集手部区域的 RGB 图像和深度图像,并结合深度信息和肤色信息,对手势进行分割;其次,对手 势图像进行形态学滤波后,得到手势区域的轮廓凸包面积比、凸缺陷数、手指夹角和关键点连线比值等特征参数;最后,通过分 析不同手势独有的特征参数,实现准确的手势识别。 对数字 0~ 9 的手势分别进行 50 次识别实验,手势分割准确率为 100%,手 势识别准确率为 98. 5%。 实验表明该方法准确可靠,数字手势识别效果理想。
英文摘要:
      In order to solve the existing problems that the hand gestures recognition is easily to be interfered by background noise and the algorithm is complex, a digital gesture semantic recognition method based on 3D vision is proposed. First of all, RGB and depth images of hand area were collected by Realsense 3D camera, and segmentation results of hand gesture were obtained by combining depth information and skin color information. Secondly, after morphological filtering of gesture images, the feature parameters of gesture region such as area ratio of contour to convex hull, number of convex defects, angle between fingers and the length ratio of key points connection were obtained. Finally, analyzed the unique characteristic parameters of different gestures to achieve accurate gesture recognition. The digital gesture recognition experiments of 0- 9 were carried out 50 times, the accuracy of gesture segmentation was 100%, and the accuracy of gesture recognition was 98. 5%. The experiments show that this method is accurate and reliable, and the effect of digital gesture recognition is ideal.
查看全文  查看/发表评论  下载PDF阅读器