冯文宇,张宇豪,张 堃,费敏锐,徐 胜.复杂环境下课堂多人状态检测算法研究[J].电子测量与仪器学报,2021,35(6):53-62
复杂环境下课堂多人状态检测算法研究
Research on multi-person detection algorithm inclassroom in complex environment
  
DOI:
中文关键词:  多人异常检测  姿态识别  口罩识别  YOLO 模型  OpenPose 模型
英文关键词:multi-people anomaly detection  gesture recognition  mask recognition  YOLO model  OpenPose
基金项目:国家自然基金重点项目(61633016)、江苏省高校自然基金(18KJB510038)、江苏省333工程可研项目(BRA2018218)、国家级大学生创新创业训练计划资助项目(202010304065Z)资助
作者单位
冯文宇 1. 南通大学 电气工程学院,2. 南通大学 张謇学院 
张宇豪 1. 南通大学 电气工程学院,2. 南通大学 张謇学院 
张 堃 1. 南通大学 电气工程学院 
费敏锐 3. 上海大学 机电工程与自动化学院 上海市电站自动化技术重点实验室 
徐 胜 4. 南通职业大学 电子信息工程学院,5. 华东理工常熟研究院有限公司 
AuthorInstitution
Feng Wenyu 1. School of Electrical Engineering, Nantong University,2. School of Zhangjian, Nantong University 
Zhang Yuhao 1. School of Electrical Engineering, Nantong University,2. School of Zhangjian, Nantong University 
Zhang Kun 1. School of Electrical Engineering, Nantong University 
Fei Minrui 3. Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronic Engineering and Automation, Shanghai University 
Xu Sheng 4. School of Electronics and Information,Nantong Vocational University,5. The East China Science and Technology Research Institute of Changshu Co. , Ltd 
摘要点击次数: 747
全文下载次数: 5
中文摘要:
      新冠肺炎疫情背景下课堂多人佩戴口罩及姿态识别问题,提出了基于 YOLO 和 OpenPose 模型的课堂多人状态检测算 法。 提出的 Efficient-YOLO 模型,通过采用 CBAM 注意力模块、SPNET-NEW 模块,解决了多人遮挡和无规则化目标的口罩佩戴 检测精度问题。 此外,提出了一种轻量化的 Class-OpenPose 模型检测学生上课姿态,该算法在 OpenPose 模型基础上,使用 ShuffleNetV2-NEW 对传统模型在底层特征提取方面进行改进,实现了复杂环境下关键姿态点的实时准确检测。 实验表明,在课 堂多人异常状态检测任务中,Class-OpenPose 模型平均准确率高于传统模型,为 79. 0%,检测速度达到 13. 5 F/ s;Efficient-YOLO 口罩识别模型达到 83. 1%的平均准确率,检测时间仅需 31. 54 ms,为课堂学生状态检测提供了不错的算法思路。
英文摘要:
      Aiming at the problem of multi-person wearing masks in the classroom and gesture recognition in COVID-19, this paper presents a multi-person state detection algorithm, based on the YOLO and OpenPose models. The Efficient-YOLO model proposed in this paper uses the classical CBAM attention and SPNET-NEW modules to deal with the problems of multi-person occlusion and irregular targets. In addition, this paper presents a lightweight Class-OpenPose model to detect the students’ posture. Based on the OpenPose model, our proposed algorithm uses ShuffleNetV2-NEW to improve the traditional model in terms of low-level feature extraction, and extracts correct key posture points in complex environments and in real-time. Experiments show that in the multi-person abnormal event detection task, the average accuracy of the Class-OpenPose model is 79. 0% that is higher than that of the traditional model, and the detection speed reaches 13. 5 F/ s; the Efficient-YOLO mask recognition model achieves an average accuracy of 83. 1%, and the detection time is only 31. 54 ms, which provides a good algorithm idea for classroom student status detection.
查看全文  查看/发表评论  下载PDF阅读器