韩 露,史贤俊,翟禹尧,林 云.基于多信号流图模型的导弹系统级测试性设计研究[J].电子测量与仪器学报,2021,35(5):111-119 |
基于多信号流图模型的导弹系统级测试性设计研究 |
Research on testability design method of missile systembased on multi-signal model |
|
DOI: |
中文关键词: 测试性设计 多信号流图模型 相关性矩阵 测试性指标 混合离散二进制粒子群-遗传算法 测试优化选取 |
英文关键词:testability design multi-signal model correlation matrix testability index hybrid discrete binary particle swarm
optimization-genetic algorithm test optimization selection |
基金项目: |
|
|
摘要点击次数: 861 |
全文下载次数: 4 |
中文摘要: |
针对导弹长时间贮存,一次性使用特点,开展测试性设计工作难度较大的问题,提出采用多信号流图模型对导弹系统进
行测试性设计研究。 根据故障模式、影响及危害性分析(FMECA)信息确定系统的故障模式,采用多信号流图模型建立导弹系
统级测试性模型,根据可达性算法得到故障-测试相关性矩阵,确定系统的测试性指标。 考虑到现有算法如遗传算法、二进制
粒子群算法等诸多算法的缺点,提出采用混合离散二进制粒子群-遗传算法对测试进行优化选取,将 22 个备选测试减少至 14
个,大大减少测试个数。 最后通过实例验证,所提算法可以满足系统测试性指标精度要求,并有效降低测试个数,减少测试
费用。 |
英文摘要: |
Aiming at the problem that missiles are difficult to carry out testability design due to their own characteristics, a multi-signal
model for testability design of missile systems is proposed. Based on the FMECA information, the failure mode in the system is
determined, and the multi-signal model is used to establish a test model of the missile system. The correlation matrix of the fault-test is
obtained and the system testability index is determined. Considering the shortcomings of existing algorithms such as genetic algorithm and
binary particle swarm algorithm, a hybrid discrete binary particle swarm-genetic algorithm is proposed to optimize the test, reduced 22
candidate tests to 14, greatly reducing the number of tests. Finally, the experimental results show that the proposed algorithm can meet
the accuracy requirements of testability index, and effectively reduce the number of tests and test costs. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|