唐 震,彭业萍,王伟江,曹广忠,吴 超.融合 Hough 直线检测和 Grab-cut 的风机叶片
自适应分割方法[J].电子测量与仪器学报,2021,35(4):161-168 |
融合 Hough 直线检测和 Grab-cut 的风机叶片
自适应分割方法 |
Adaptive segmentation method for wind turbine blades combiningHough line detection and Grab-cut algorithm |
|
DOI: |
中文关键词: 风机叶片 无人机 图像分割 Hough 直线检测 Grab-Cut |
英文关键词:WTB UAV image segmentation Hough line detection Grab-cut |
基金项目:国家自然科学基金(51905351,U1813212)、广东省自然科学基金(2018A030310522)、深圳市科技计划项目(JCYJ20190808113413430)资助 |
|
Author | Institution |
Tang Zhen | 1.Guangdong Key Laboratory of Electromagnetic Control and Intelligent Robots, College of Mechatronics and
Control Engineering, Shenzhen University |
Peng Yeping | 1.Guangdong Key Laboratory of Electromagnetic Control and Intelligent Robots, College of Mechatronics and
Control Engineering, Shenzhen University |
Wang Weijiang | 1.Guangdong Key Laboratory of Electromagnetic Control and Intelligent Robots, College of Mechatronics and
Control Engineering, Shenzhen University |
Cao Guangzhong | 1.Guangdong Key Laboratory of Electromagnetic Control and Intelligent Robots, College of Mechatronics and
Control Engineering, Shenzhen University |
Wu Chao | 1.Guangdong Key Laboratory of Electromagnetic Control and Intelligent Robots, College of Mechatronics and
Control Engineering, Shenzhen University |
|
摘要点击次数: 927 |
全文下载次数: 6 |
中文摘要: |
完整的边缘信息对风力发电机叶片的边缘缺陷检测至关重要,但由于户外采集的风机叶片图像背景复杂多样,现有图
像分割算法的分割精度不足,无法保证边缘缺陷的完整性。 因此,提出一种基于图像边缘特征与颜色信息的自适应图像分割方
法实现风机叶片边缘检测。 首先,使用 Hough 直线检测初步定位叶片直线边缘;然后,在目标区域应用基于 Otus 阈值分割和形
态学运算的 Grab-cut 算法,实现叶片图像的自适应分割。 采用无人机采集多个场景的图像作为测试样本,对分割方法与其他方
法进行定性和定量对比分析。 结果表明,该方法能自适应且准确地实现风机叶片图像分割,并保留边缘缺陷的完整性,其边缘
覆盖率(0. 971 7)和边界位移误差(3. 040 3)指标均优于其他方法,对风机叶片的边缘缺陷检测具有重大潜在应用价值。 |
英文摘要: |
Complete edge information is essential to the detection of edge defects of turbine wind turbine blades. Due to the complex and
diverse background of wind turbine blade ( WTB) images, the existing image segmentation algorithms have insufficient segmentation
accuracy and cannot guarantee the integrity of edge defects. Therefore, an adaptive image segmentation based on image edge features and
color information is proposed for the edge detection of WTBs. Firstly, Hough line detection is used to detect the blade edge at straight
lines. Secondly, the Graph-cut algorithm based on Otus threshold segmentation and morphological operations is applied to adaptively
separate the blade target areas. Finally, comparative experiments are carried out with a lot of image samples captured under various
scenes. The results show that higher edge coverage and lower boundary displacement errors of the WTB image segmentation with 0. 971 7
and 3. 040 3 are obtained by the proposed method as compared with other image segmentation methods. The proposed approach has
potential application value for the edge defect detection of WTBs. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|