薛 敏,孙 炜,余洪山,张 星.基于 WiFi 指纹的层级学习室内定位模型[J].电子测量与仪器学报,2021,35(4):118-126
基于 WiFi 指纹的层级学习室内定位模型
Hierarchical deep learning model to locate the mobiledevice via WiFi fingerprints
  
DOI:
中文关键词:  位置管理  WiFi 指纹  室内定位  层级学习模型
英文关键词:location management  WiFi fingerprint  indoor localization  hierarchical neural network
基金项目:国家自然科学基金(U1813205)、汽车车身先进设计制造国家重点实验室(71765003)、电子制造业智能机器人技术湖南省重点实验室(2017TP1011)项目资助
作者单位
薛 敏 1. 湖南大学 电气与信息工程学院,2. 机器人视觉感知与控制技术国家工程实验室,3. 电子制造业智能机器人技术湖南省重点实验室 
孙 炜 1. 湖南大学 电气与信息工程学院,2. 机器人视觉感知与控制技术国家工程实验室,3. 电子制造业智能机器人技术湖南省重点实验室 
余洪山 1. 湖南大学 电气与信息工程学院,2. 机器人视觉感知与控制技术国家工程实验室,3. 电子制造业智能机器人技术湖南省重点实验室 
张 星 1. 湖南大学 电气与信息工程学院,3. 电子制造业智能机器人技术湖南省重点实验室 
AuthorInstitution
Xue Min 1. College of Electrical and Information Engineering,Hunan University,2. National Engineering Laboratory for Robot Vision Perception and Control Technologies,3. Hunan Key Laboratory of Intelligent Robot Technology in Electronic Manufacturing 
Sun Wei 1. College of Electrical and Information Engineering,Hunan University,2. National Engineering Laboratory for Robot Vision Perception and Control Technologies,3. Hunan Key Laboratory of Intelligent Robot Technology in Electronic Manufacturing 
Yu Hongshan 1. College of Electrical and Information Engineering,Hunan University,2. National Engineering Laboratory for Robot Vision Perception and Control Technologies,3. Hunan Key Laboratory of Intelligent Robot Technology in Electronic Manufacturing 
Zhang Xing 1. College of Electrical and Information Engineering,Hunan University,3. Hunan Key Laboratory of Intelligent Robot Technology in Electronic Manufacturing 
摘要点击次数: 537
全文下载次数: 7
中文摘要:
      随着物联网和信息技术的飞速发展,基于移动位置的服务近年来日益受到关注,同时也促进了室内定位技术的发展。 基于 WiFi 指纹的室内定位技术以其部署广泛、成本低廉等优点受到了学术界的广泛研究。 针对移动设备在室内环境中的定位 问题,提出了一种层级学习室内定位系统(hierarchical deep learning indoor localization framework, HDLIL)。 为获取和学习可靠的 指纹特征,采用基于变分自编码(variational autoencoder, VAE)的特征提取模块来表征训练数据的潜在表示。 通过构建多层神 经网络来分析输入特征与位置输出之间的关系,并在输出层连接 Softmax 分类器,预测移动设备的位置。 在定位阶段,移动设备 接收测试数据并发送定位请求,然后通过加载 HDLIL 估计该测试指纹的位置。 最后通过实验对 HDLIL 的定位性能进行了评 估,讨论了不同定位因素对结果的影响,验证了该定位算法的精度及鲁棒性。
英文摘要:
      With rapid development of internet of things ( IOT) and information technology, mobile location-based service ( LBS) is gaining more and more research focus in recent years. It also stimulates the development of indoor localization technology. Owing to the advantage of its pervasive deployment, WiFi fingerprint-based indoor localization has drawn much attention to academia. However, the fluctuation of WiFi signals and other interference always influence the localization performance. In this paper, a hierarchical deep learning indoor localization framework (HDLIL) is proposed to solve the problem of mobile device localization in indoor environments and predict the specific position. To capture and learn the reliable fingerprint features, a feature extraction module based on variational autoencoder (VAE) is introduced to characterize the latent representation of the training data. Also, to train the localization model, we feed the reconstructed training fingerprints as well as corresponding labels to a 3-layer deep neural network, of which the output of current layer is set as the input for the next layer, followed by a location output module based on the concatenated softmax classification. In the localization phase, the localization fingerprints ( testing fingerprints) is set as the input, the HDLIL model is invoked and the output of final layer is the predicted location of the mobile device. In addition, to evaluate the localization performance, we conducted the experiment in a real indoor scene, and several influence factors are discussed. The result indicates that the proposed HDLIL model can attain a superior localization performance.
查看全文  查看/发表评论  下载PDF阅读器