刘秀平,冯奇,袁皓,徐健,陆珍,王圣鹏,闫焕营.LBP与低秩分解的网状织物纹理缺陷检测方法[J].电子测量与仪器学报,2021,35(1):135-141 |
LBP与低秩分解的网状织物纹理缺陷检测方法 |
Defect detection of mesh fabric with LBP and low rank decomposition |
|
DOI: |
中文关键词: 局部二值模式 织物纹理 特征提取 低秩分解 缺陷检测 |
英文关键词:LBP fabric texture feature extraction low rank decomposition defect detection |
基金项目:陕西省科技厅项目(2018GY 173)、西安市科技局项目(GXYD75)资助 |
|
Author | Institution |
Liu Xiuping | School of Electronices and Information, Xi’an Polytechnic University, Xi’an 710048, China |
Feng Qi | School of Electronices and Information, Xi’an Polytechnic University, Xi’an 710048, China |
Yuan Hao | School of Electronices and Information, Xi’an Polytechnic University, Xi’an 710048, China |
Xu Jian | School of Electronices and Information, Xi’an Polytechnic University, Xi’an 710048, China |
Lu Zhen | School of Electronices and Information, Xi’an Polytechnic University, Xi’an 710048, China |
Wang Shengpeng | School of Electronices and Information, Xi’an Polytechnic University, Xi’an 710048, China |
Yan Huanying | Shenzhen Municipal Robotel Robot Technology Co., LTD, Shenzhen 518109, China |
|
摘要点击次数: 1076 |
全文下载次数: 3 |
中文摘要: |
针对网状织物纹理复杂,缺陷检测难度大的问题,提出一种基于局部二值模式(LBP)与低秩稀疏矩阵分解的网状织物纹理缺陷检测方法.首先,采用等价旋转不变的局部二值模式算法提取网状织物纹理特征,获得纹理特征矩阵;其次,根据纹理特征矩阵构建低秩稀疏分解模型;最后,通过最佳阈值分割算法对网状织物低秩稀疏分解产生的显著图进行分割.实验结果表明,与K 奇异值分解(K SVD)算法相比,该方法的平均准确率达到8994%,平均召回率达到9388%,分类总正确率达到92%以上。 |
英文摘要: |
For the problem of complex texture and difficulty in defect detection of mesh fabric. An algorithm based on local binary pattern (LBP) and low rank sparse matrix decomposition for defect detection of mesh fabric is proposed. Firstly, the local binary pattern with equivalent invariant rotation is used to extract the features of the mesh fabric image, and the texture feature matrix is obtained. Then, an appropriate low rank sparse decomposition model is constructed based on the texture feature matrix. Finally, the significant graph generated by sparse matrix was segmented by OTSU optimal threshold segmentation algorithm, so that the defects of mesh fabric could be detected. Compared with K SVD algorithm, the experimental results show that the average accuracy of the method in this paper is 8994%, the average recall rate is over 9388%, and the total accuracy of classification is over 92%. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|