乔文超,王红雨,王鸿东.基于 BP 神经网络的无人机IMU 多传感器冗余的补偿算法[J].电子测量与仪器学报,2020,34(12):19-28
基于 BP 神经网络的无人机IMU 多传感器冗余的补偿算法
Compensation algorithm for UAV IMU multi-sensor redundancy based on BP neural network
  
DOI:
中文关键词:  惯性测量多传感器冗余  神经网络  数据融合  仲裁  IMU 冗余安装
英文关键词:IMU multi-sensor redundant  neural network  data fusion  arbitration  IMU redundant installation
基金项目:国家自然科学基金(61471237,11174206)项目资助
作者单位
乔文超 1. 上海交通大学 电子信息与电气工程学院 
王红雨 1. 上海交通大学 电子信息与电气工程学院 
王鸿东 2. 上海交通大学 海洋智能装备与系统教育部重点实验室 
AuthorInstitution
Qiao Wenchao 1. School of Electronic Information and Electrical Engineering,Shanghai Jiaotong University 
Wang Hongyu 1. School of Electronic Information and Electrical Engineering,Shanghai Jiaotong University 
Wang Hongdong 2. Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education,Shanghai Jiaotong University 
摘要点击次数: 315
全文下载次数: 1217
中文摘要:
      针对无人机多传感器数据决策时存在的数据可靠性不足以及资源浪费的问题,提出一种基于 BP 神经网络的无人机惯 性测量单元(IMU)多传感器冗余的补偿算法。 将低精度的 IMU 传感器数据输入到 BP 神经网络,利用 BP 神经网络的非线性拟 合能力,补偿低精度 IMU 数据的误差,然后利用基于置信度的数据仲裁算法对多个较高精度数据进行仲裁,输出经过数据融合 后的传感器数据,此过程还可以进行传感器故障判断和定位。 通过改变同类型传感器安装方式解决奇点问题。 实验结果表明, 经过神经网络误差补偿后,误差比原来减小了 55. 2%,比使用卡尔曼滤波算法进行误差补偿后的误差小 53. 9%。 此算法充分发 挥了冗余传感器设计的优势,提高了传感器系统的可靠性。
英文摘要:
      Aiming at the problems of insufficient data reliability and resource waste in the decision of redundant data of UAVs, a compensation algorithm for UAV IMU multi-sensor redundancy based on BP neural networks is proposed. The low-precision IMU sensor data is input to the BP neural network, and the non-linear fitting capability of the BP neural network is used to compensate for errors in low-precision IMU data, then use data arbitration algorithm based on confidence to arbitrate multiple higher-precision data and output the sensor data after data fusion. This process can also judge and locate sensor faults. The singularity problem can be solved by changing the installation method of similar sensors. The experimental results prove that after neural network error compensation, the error is reduced by 55. 2%. Furthermore, the error after neural network error competition is 53. 9% smaller than the error after using the kalman filter algorithm for error compensation. The algorithm takes full advantage of redundant sensor design, improves the reliability of the sensor system.
查看全文  查看/发表评论  下载PDF阅读器