储开斌,赵 爽,冯成涛.基于 Mahony-EKF 的无人机姿态解算算法[J].电子测量与仪器学报,2020,34(12):12-18
基于 Mahony-EKF 的无人机姿态解算算法
UAV attitude calculation algorithm based on Mahony-EKF
  
DOI:
中文关键词:  无人机  卡尔曼滤波  Mahony 滤波器  姿态解算  数据融合  惯性测量单元
英文关键词:unmanned aerial vehicle (UAV)  Kalman filter  Mahony filter  attitude calculation  data fusion  inertial measurement unit
基金项目:国家自然科学基金(61772090)、教育部地方高校“新工科”综合改革类项目(教高厅函[2018] 17 号)、江苏省高等学校自然科学研究项目(19KJB510017)、江苏省教改研究(2019JSJG243)资助项目
作者单位
储开斌 1.常州大学 微电子与控制工程学院 
赵 爽 1.常州大学 微电子与控制工程学院 
冯成涛 1.常州大学 微电子与控制工程学院 
AuthorInstitution
Chu Kaibin 1.School of Microelectronics and Control Engineering,Changzhou University 
Zhao Shuang 1.School of Microelectronics and Control Engineering,Changzhou University 
Feng Chengtao 1.School of Microelectronics and Control Engineering,Changzhou University 
摘要点击次数: 643
全文下载次数: 1157
中文摘要:
      针对微惯性测量单元精度低和传统姿态解算方法误差较大,提出一种 Mahony 和扩展卡尔曼滤波(EKF)融合的姿态解 算算法。 首先通过 Mahony 滤波器融合陀螺仪、加速度计和磁力计数据,解算得到初步姿态四元数。 再以 Mahony 滤波器的姿态 四元数作为 EKF 的量测值,根据非重力加速度的大小,自适应正相关调节量测噪声协方差矩阵;根据陀螺仪测量的角速度信息 建立 EKF 状态方程。 最终经过 EKF 滤波后,获取无人机姿态的估计。 经过仿真实验验证,融合算法解算静态姿态角误差小于 0. 1°,解算动态姿态角误差小于 1°,均优于互补滤波算法和改进 EKF 算法。 融合算法能有效抑制陀螺仪漂移误差,滤除加速度 计测量值混有的高频噪声和抑制非重力加速度的干扰,提高姿态解算精度。
英文摘要:
      A fusion algorithm combining Mahony and extended Kalman filter (EKF) is proposed to solve the problem of low accuracy of micro inertial measurement unit and large error of traditional attitude calculation method. First, the initial attitude quaternion is obtained by fusing gyroscope, accelerometer and magnetometer data with Mahony filter. Then, the attitude quaternion of the Mahony filter is used as the measurement value of EKF. According to the size of the non-gravity acceleration, the measurement noise covariance matrix is automatically adjusted by the positive correlation. The EKF equation of state is established according to the angular velocity information measured by the gyroscope. Finally, the attitude estimation of UAV is obtained after EKF filtering. The simulation results show that the static attitude angle error is less than 0. 1° and the dynamic attitude angle error is less than 1°, both of which are better than the complementary filtering algorithm and the improved EKF algorithm. The fusion algorithm can effectively suppress the gyro drift error, filter out the high frequency noise mixed with the measured value of accelerometer and suppress the interference of non-gravity acceleration, and improve the attitude calculation accuracy.
查看全文  查看/发表评论  下载PDF阅读器