董晓璇,胡华强,程嗣怡.融合隐马尔科夫模型的雷达工作状态跟踪[J].电子测量与仪器学报,2020,34(1):128-133
融合隐马尔科夫模型的雷达工作状态跟踪
Radar working state recognition based on the fusion hidden Markov model
  
DOI:
中文关键词:  雷达工作状态  隐马尔科夫模型  DS证据理论  融合识别
英文关键词:radar working state  hidden Markov model  DS evidence theory  fusion recognition
基金项目:
作者单位
董晓璇 1.空军工程大学航空机务士官学校 
胡华强 1.空军工程大学航空机务士官学校 
程嗣怡 2.空军工程大学航空工程学院 
AuthorInstitution
Dong Xiaoxuan 1. Aviation Maintenance Sergeant College, Air Force Engineering University 
Hu Huaqiang 1. Aviation Maintenance Sergeant College, Air Force Engineering University 
Cheng Siyi 2. Aeronautics Engineering College, Air Force Engineering University 
摘要点击次数: 521
全文下载次数: 0
中文摘要:
      针对电子侦察系统对雷达工作状态的跟踪问题,提出了一种基于融合隐马尔科夫模型的雷达工作状态跟踪方法。该算法首先将雷达工作过程建模成隐马尔科夫模型,其次通过对侦察的雷达短语序列识别,完成单个平台下雷达工作状态的跟踪;最后再运用DS证据理论将多平台的识别结果进行融合,实现多平台融合跟踪。对算法的识别率进行仿真,仿真结果表明,提出的算法提高了错误观测下对雷达工作状态跟踪的准确率,当观测值错误率为20%时跟踪正确率高达93%。
英文摘要:
      For the tracking problem of radar working state by electronic reconnaissance system, a radar working state tracking method based on fused hidden Markov model is proposed. First, the radar working process is modeled as a hidden Markov model by this algorithm. Second, by recognizing the reconnaissance radar phrase sequence, the tracking of radar working state is realized on a single platform. Finally, the DS evidence theory is used to fuse the recognition results of multi platform to realize the multi platform fusion tracking. The recognition rate of the algorithm is simulated, and the simulation result shows that the proposed algorithm can improve the tracking accuracy of radar working state under error observation. When the error rate of observation is 20%, the tracking accuracy reaches 93%.
查看全文  查看/发表评论  下载PDF阅读器