佐 磊,胡小敏,何怡刚,孙洪凯,李 兵.小样本数据处理的加速寿命预测方法[J].电子测量与仪器学报,2020,34(11):26-32
小样本数据处理的加速寿命预测方法
Accelerated life prediction method for small sample data
  
DOI:
中文关键词:  小样本失效数据  数据处理  Bayes Bootstrap & k-means  寿命预测
英文关键词:small sample failure data  data processing  Bayes Bootstrap & k-means  lifetime prediction
基金项目:装备预先研究重点项目(41402040301)、国家重点研发计划(20l6YFF0102200)、国家自然科学基金重点项目(51637004)、国家自然科学基金(51777050,51577046)资助项目
作者单位
佐 磊 1. 合肥工业大学 电气与自动化工程学院,2. 合肥工业大学 可再生能源接入电网技术 国家地方联合工程实验室 
胡小敏 1. 合肥工业大学 电气与自动化工程学院 
何怡刚 1. 合肥工业大学 电气与自动化工程学院,2. 合肥工业大学 可再生能源接入电网技术 国家地方联合工程实验室,3. 武汉大学 电气与自动化学院 
孙洪凯 1. 合肥工业大学 电气与自动化工程学院 
李 兵 1. 合肥工业大学 电气与自动化工程学院,2. 合肥工业大学 可再生能源接入电网技术 国家地方联合工程实验室 
AuthorInstitution
Zuo Lei 1. School of Electrical Engineering and Automation, Hefei University of Technology,2. National Local Joint Engineering Laboratory of Renewable Energy Access to Power Grid Technology, Hefei University of Technology 
Hu Xiaomin 1. School of Electrical Engineering and Automation, Hefei University of Technology 
He Yigang 1. School of Electrical Engineering and Automation, Hefei University of Technology,2. National Local Joint Engineering Laboratory of Renewable Energy Access to Power Grid Technology,Hefei University of Technology,3. School of Electrical Engineering and Automation, Wuhan University 
Sun Hongkai 1. School of Electrical Engineering and Automation, Hefei University of Technology 
Li Bing 1. School of Electrical Engineering and Automation, Hefei University of Technology,2. National Local Joint Engineering Laboratory of Renewable Energy Access to Power Grid Technology,Hefei University of Technology 
摘要点击次数: 519
全文下载次数: 1156
中文摘要:
      Bayes Bootstrap 法在小样本预测领域应用成熟广泛,但由于其随机产生的自助样本中存在不利于预测精度的野值点造 成预测偏差较大,针对此不足,提出 Bayes Bootstrap & k-means 方法。 在拥有小样本失效数据情况下,首先采用 Bayes Bootstrap 法产生自助样本对原有寿命数据进行容量扩充,再采用 k-means 方法对其进行数据聚类分析,尽可能去除野值点,筛选出更加 符合预测规律的数据点。 最后以多芯片组件互连结构双应力加速寿命进行预测为例计算验证了该方法相比仅采用 Bayes Bootstrap 法,预测精度提高了约 81. 44%,有一定的工程意义。
英文摘要:
      The Bayes Bootstrap method is widely used in the field of small sample prediction. However, due to the random value points that are not conducive to the prediction accuracy in the randomly generated self-service sample, the prediction deviation is large. In view of this deficiency, this paper proposes the Bayes Bootstrap & k-means method. In the case of having small sample failure data, use the Bayes Bootstrap method to generate self-service samples to expand the capacity of the original life data firstly, and then use the k-means method to perform data clustering analysis to remove outliers as much as possible and filter out more data points that meet the forecasting rules. Finally, the multi-chip module interconnection structure double stress accelerated life prediction is used as an example to verify the calculation method. Compared with the Bayes Bootstrap method, the prediction accuracy is improved by about 81. 44%, which has certain engineering significance.
查看全文  查看/发表评论  下载PDF阅读器