张晓丽,董 昱.面向铁路货车车号定位的 Faster R-CNN卷积神经网络[J].电子测量与仪器学报,2020,34(10):192-200
面向铁路货车车号定位的 Faster R-CNN卷积神经网络
Faster R-CNN convolutional neural network for the location of freight train number
  
DOI:
中文关键词:  货车车号定位  Faster R-CNN  卷积神经网络  特征增强
英文关键词:train number location  Faster R-CNN  convolutional neural network  feature enhancement
基金项目:国家自然科学基金(61763023)资助项目
作者单位
张晓丽 1.兰州交通大学 自动化与电气工程学院 
董 昱 1.兰州交通大学 自动化与电气工程学院 
AuthorInstitution
Zhang Xiaoli 1.College of Automation and Electrical Engineering, Lanzhou Jiaotong University 
Dong Yu 1.College of Automation and Electrical Engineering, Lanzhou Jiaotong University 
摘要点击次数: 605
全文下载次数: 763
中文摘要:
      为了解决传统算法对于铁路货运列车车号识别准确率不高问题,提出了一种面向铁路货车车号定位的 Faster R-CNN 神 经网络。 通过调整特征提取网络的相关尺寸参数及连接方式增强了最后一层卷积特征图的细节特征。 并采用 k-means++聚类 算法求取车号区域长宽比改进 anchor 尺寸设计,使目标检测框与实际车号区域更加贴合。 实验过程中,采用了数据增广、 dropout 方法提升网络的鲁棒性。 结果显示,改进 Faster R-CNN 网络在铁路货车车号定位精度达到了 93. 15%,召回率 90. 76%, 综合 F1 指标 91. 94%,也说明该方法能够对铁路货车车号准确定位,并为车号识别过程提供可靠的数据支持。
英文摘要:
      In order to solve the problem of low accuracy of traditional algorithm for train number identification of railway freight trains, Faster R-CNN neural network for train number location of railway freight trains is proposed. The detailed features of the final convolution feature map are enhanced by adjusting the relevant size parameters and connection mode of the feature extraction network. The k-means ++ clustering algorithm is used to calculate the length width ratio of the train number area. The improved anchor size design makes the target detection frame more suitable for the actual train number area. In the experiment, data augmentation and dropout are used to improve the robustness of the network. The results show that the improved Faster R-CNN network has achieved 93. 15% accuracy in the location of railway freight train number, 90. 76% recall rate and 91. 94% comprehensive F1 index. It also shows that this method can accurately locate the railway freight train number and provide reliable data support for the identification process.
查看全文  查看/发表评论  下载PDF阅读器