李梅梅,胡春海,龙 平,刘少楠.基于 MultiRes+UNet 网络的车道线检测算法[J].电子测量与仪器学报,2020,34(9):117-122
基于 MultiRes+UNet 网络的车道线检测算法
Lane line detection algorithm based on MultiRes+UNet network
  
DOI:
中文关键词:  车道线检测  MultiRes+UNet 网络  空洞卷积  深度学习
英文关键词:lane detection  MultiRes+UNet network  dilated convolution  deep learning
基金项目:国家自然科学基金(61601105,61602099,61701097)、河北省自然科学基金(F2016501073)资助项目
作者单位
李梅梅 1. 东北大学秦皇岛分校 计算机与通信工程学院,2. 燕山大学 电气工程学院 
胡春海 2. 燕山大学 电气工程学院 
龙 平 1. 东北大学秦皇岛分校 计算机与通信工程学院 
刘少楠 1. 东北大学秦皇岛分校 计算机与通信工程学院 
AuthorInstitution
Li Meimei 1. School of Computer and Communication Engineering,Northeastern University at Qinhuangdao,2. School of Electrical Engineering,Yanshan University 
Hu Chunhai 2. School of Electrical Engineering,Yanshan University 
Long Ping 1. School of Computer and Communication Engineering,Northeastern University at Qinhuangdao 
Liu Shaonan 1. School of Computer and Communication Engineering,Northeastern University at Qinhuangdao 
摘要点击次数: 743
全文下载次数: 896
中文摘要:
      无人驾驶技术改变人类生活方式,带车道线属性的高精地图,是无人驾驶领域的重要一环。 针对现有算法在车道线检 测时存在准确率低、效率低等问题提出基于 MultiRes+UNet 检测方法。 该方法通过空洞卷积扩大卷积感受野,从而对全局信息 统筹,运用 MultiRes block 和 Res path 结构减轻编码器-解码器特征之间的差异,大大降低了内存的需求。 实验结果表明,此算 法在保证检测准确率的同时, 提高了算法的稳定性和运行速率,在纯车道、复合车道、阴影污损车道等多情况下,调和平均值分 数分别为 0. 959、0. 942、0. 891,该算法存在高效性、高鲁棒性。
英文摘要:
      Unmanned technology changes human lifestyle. The high-precision map with the lane line attribute plays a crucial role in the unmanned field. Proposing a detection method based on MultiRes + UNet network, aiming at the problem that the low accuracy and low efficiency of existing algorithms in the detection of composite lane lines. This method expands the convolution receptive field by dilated convolution to co-ordinate global information. The MultiRes block and Res path structure are used to reduce the difference between the encoder and decoder features, which greatly reduces the memory requirement. The experimental results show that the proposed algorithm improves the detection speed of the algorithm while ensuring the detection accuracy. When the pure lane, compound lane and shadow fouling lanes are obtained, the harmonic mean F1 scores are 0. 959, 0. 942, and 0. 891, the algorithm is high efficiency and high robustness.
查看全文  查看/发表评论  下载PDF阅读器