罗志远,丰 硕,刘小峰,陈俊风,王 瑞.一种基于分步遗传算法的多无人清洁车区域覆盖路径规划方法[J].电子测量与仪器学报,2020,34(8):43-50
一种基于分步遗传算法的多无人清洁车区域覆盖路径规划方法
Method of area coverage path planning of multi-unmanned cleaning vehicles based on step by step genetic algorithm
  
DOI:
中文关键词:  多无人清洁车  区域覆盖  多旅行商问题  聚类算法  遗传算法
英文关键词:multi-unmanned cleaning vehicles  area coverage  MTSP  clustering algorithm  genetic algorithm
基金项目:江苏省重点研究开发项目(BK20192004, BE2018004-04, BE2017071,BE2017647)、东南大学生物电子学国家重点实验室开放研究基金(2019005)项目资助
作者单位
罗志远 1. 河海大学 物联网工程学院 
丰 硕 1. 河海大学 物联网工程学院 
刘小峰 1. 河海大学 物联网工程学院 
陈俊风 1. 河海大学 物联网工程学院 
王 瑞 2. 中国铁道科学研究院集团有限公司电子计算技术研究所 
AuthorInstitution
Luo Zhiyuan 1. College of the IoT Engineering Hohai University 
Feng Shuo 1. College of the IoT Engineering Hohai University 
Liu Xiaofeng 1. College of the IoT Engineering Hohai University 
Chen Junfeng 1. College of the IoT Engineering Hohai University 
Wang Rui 2. China Academy of Railway Sciences Group Co. , Ltd. 
摘要点击次数: 368
全文下载次数: 1024
中文摘要:
      为了解决不规则区域内多无人清洁车区域覆盖路径的全局规划问题,提出一种基于分步遗传算法的区域覆盖方法。 首 先,将目标区域依据清洁车大小进行栅格化,将多车辆区域覆盖路径规划问题转化为多旅行商(MTSP)问题。 然后,使用分步 遗传算法求解多旅行商问题:第 1 步采用模糊 c 均值聚类方法将求解多旅行商问题转化为求解多个单旅行商(TSP)问题;第 2 步使用了分步遗传算法对每个单旅行商问题进行求解,并使用杂草入侵算法中子父代共存的思想对遗传算法的选择机制进行 改进。 最后,分别在模拟的校园场景和小区场景中进行仿真实验。 实验结果表明,在两个场景中提出的方法能够实现多无人清 洁车完成区域路径覆盖,提出的分步遗传算法比分组遗传算法收敛速度更快;在校园场景中,提出的分步遗传算法相比于分组 遗传算耗时减少 54%,最优解路径长度减少 38%;在小区场景中,提出的分步遗传算法相比于分组遗传算耗时减少 55%,最优 解路径长度减少 44%。
英文摘要:
      In order to solve the problem of global planning of multi-unmanned vehicle coverage paths in irregular areas, a regional coverage method based on stepwise genetic algorithm is proposed. First, the target area is rasterized according to the size of the cleaning vehicle, and the multi-vehicle area coverage path planning problem is transformed into a multi-travel agent (MTSP) problem. Then, the multi-traveler problem is solved by using the stepwise genetic algorithm. The first step is to transform the multi-traveler problem into the multi-traveler (TSP) problem by using the fuzzy C-means clustering method. In the second step, a stepwise genetic algorithm is used to solve each single traveling salesman problem, and the selection mechanism of the genetic algorithm is improved by using the idea of neutron parent coexistence of weed invasion algorithm. Finally, simulation experiments are carried out in the simulated campus scene and community scene respectively. The experimental results show that the proposed method in the two scenarios can achieve multi-unmanned cleaning vehicles to complete the regional path coverage, and the proposed step-genetic algorithm has a faster convergence rate than the grouping genetic algorithm. In campus scenarios, the proposed stepwise genetic algorithm is 54% less time-consuming and 38% less optimal solution path length than the grouped genetic algorithm. In the cell scenario, the proposed stepwise genetic algorithm reduces the time consumption by 55% and the optimal solution path length by 44% compared with the grouped genetic algorithm.
查看全文  查看/发表评论  下载PDF阅读器