李志锟,黄宜庆,徐玉琼.改进变步长蚁群算法的移动机器人路径规划[J].电子测量与仪器学报,2020,34(8):15-21 |
改进变步长蚁群算法的移动机器人路径规划 |
Path planning of mobile robot based on improved variable step size ant colony algorithm |
|
DOI: |
中文关键词: 变步长 蚁群算法 信息素 路径规划 |
英文关键词:variable step size ant colony algorithm pheromone path planning |
基金项目:国家自然科学基金(61572032)、安徽省高校自然科学研究重点项目(KJ2018A0110)、安徽工程大学研究生教育创新基金、安徽工程大学中青年拔尖人才项目(2016BJRC004)资助 |
|
|
摘要点击次数: 415 |
全文下载次数: 1097 |
中文摘要: |
针对移动机器人在蚁群算法路径规划中存在陷入局部收敛且无法做到路径最优的问题,提出了改进变步长蚁群算法,
使其能够在收敛迭代次数较少的情况下做到路径最优。 针对蚁群算法应用在路径规划中的相关特性,优化信息素分配,降低局
部信息素含量对算法的影响,避免蚁群在搜索路径时陷入局部最优,在转移概率公式中增加权重因子,提高移动机器人朝着终
点方向移动的概率,有效减少蚁群收敛迭代次数,改变移动机器人移动步长,使其能在 360°内自由无碰撞移动,有效缩短路径
长度。 仿真结果表明,在简单环境下,改进变步长蚁群算法的收敛迭代次数及最优路径长度分别为 2 次及 28. 042 m,传统蚁群
算法的收敛迭代次数及最优路径长度分别为 25 次及 29. 213 m;在复杂环境下,改进变步长蚁群算法的收敛迭代次数及最优路
径长度分别为 2 次及 43. 960 2 m,改进势场蚁群算法的收敛迭代次数及最优路径长度分别为 16 次及 45. 112 7 m。 仿真结果验
证了改进变步长蚁群算法的有效性和优越性。 |
英文摘要: |
In order to solve the problem that mobile robots fall into local convergence and cannot achieve the optimal path in the path
planning of ant colony algorithm, this paper proposes an improved variable-step ant colony algorithm to enable it to achieve the path with
fewer convergence iterations optimal. According to the relevant characteristics of ant colony algorithm that applied in path planning, it
optimizes the allocation of pheromone, reduces the impact of local pheromone content on the algorithm, avoids the ant colony from falling
into the local optimum when searching the path, adds the weighting factor in the transition probability formula and increases the
probability of the mobile robot moving in the direction of the end point, it effectively reduces the number of ant colony convergence
iterations, changes the mobile robot’s moving step length, enables it to move freely and without collision within 360 °, and effectively
shortens the path length. The simulation results show that: in the simple environment, the convergent iteration times and the optimal
path length of the improved variable step ant colony algorithm are 2 times and 28. 042 m respectively, while the convergent iteration times
and the optimal path length of the traditional ant colony algorithm are 25 times and 29. 213 m respectively. In the complex environment,
the convergence iteration times and the optimal path length of the improved variable step ant colony algorithm are 2 times and
43. 960 2 m respectively, and the convergence iteration times and the optimal path length of the improved potential field ant colony
algorithm are 16 times and 45. 112 7 m respectively. The simulation results demonstrate the effectiveness and superiority of the improved
variable step ant colony algorithm. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|