陈姝琪,曹江涛,赵 挺,姬晓飞.基于关节点数据的双人交互行为识别[J].电子测量与仪器学报,2020,34(6):124-130
基于关节点数据的双人交互行为识别
Two-person interaction behavior recognition based on joint data
  
DOI:
中文关键词:  关节点数据  HOJ3D 特征  关节距离特征  卷积神经网络
英文关键词:joint point data  HOJ3D characteristic  joint distance characteristics  convolutional neural network
基金项目:国家自然科学基金(61673199)、辽宁省科学事业公益研究基金(2016002006)资助项目
作者单位
陈姝琪 1. 辽宁石油化工大学 信息与控制工程学院 
曹江涛 1. 辽宁石油化工大学 信息与控制工程学院 
赵 挺 1. 辽宁石油化工大学 信息与控制工程学院 
姬晓飞 2. 沈阳航空航天大学 自动化学院 
AuthorInstitution
Chen Shuqi 1. College of Information and Control Engineering, Liaoning Shihua University 
Cao Jiangtao 1. College of Information and Control Engineering, Liaoning Shihua University 
Zhao Ting 1. College of Information and Control Engineering, Liaoning Shihua University 
Ji Xiaofei 2. College of Automation, Shenyang Aerospace University 
摘要点击次数: 506
全文下载次数: 1006
中文摘要:
      近年来基于 RGB 视频的双人交互行为识别取得了重大进展,但 RGB 视频数据的问题严重影响双人交互行为识别率。 随着深度传感器(如微软 Kinect)的快速发展,为准确获取人体运动的关节点数据提供了可能,可以大大的弥补 RGB 视频数据 的不足。 提出一种基于关节点数据的双人交互行为识别方法。 首先对关节点数据计算出 HOJ3D 特征和关节距离特征,并将特 征按照时间顺序进行图形化后分别送入的卷积神经网络中,分别提取两种深层次特征并进行拼接,然后使用 Softmax 分类器进 行分类识别。 该方法在 SBU Kinect 动作数据集的测试结果表明,该方法的识别准确率得到了一定的提高,达到了 94. 4%。 该方 法实现简单,且具有实时处理的能力,具有较好的应用前景。
英文摘要:
      In recent years, significant progress has been made in two-person interaction recognition based on RGB video, but there are still many problems in RGB video data that seriously affect the recognition rate of two-person interaction. With the rapid development of depth sensors (such as the Microsoft Kinect), it is possible to directly obtain a data point that can track human movement, making up for the lack of RGB video data. Therefore, a two-person interaction behavior recognition method based on node data is proposed. First, HOJ3D features and joint distance features were calculated from the data of the node, and then were graphically sent into different convolutional neural networks. Then, the two features were extracted and splicedtogether. Then, Softmax classifier was used for classification and recognition. The test results of the method on the SBU Kinect action dataset show that the recognition accuracy of the method has been improved to a certain extent, reaching 94. 4%. The method is simple to implement, has the ability of real-time processing, and has a good application prospect.
查看全文  查看/发表评论  下载PDF阅读器