徐耀松,唐 维,徐才宝,徐 胜.基于 S 变换和 PSO-GRNN 的柔性直流输电线路故障测距方法[J].电子测量与仪器学报,2020,34(6):9-17 |
基于 S 变换和 PSO-GRNN 的柔性直流输电线路故障测距方法 |
Fault location method for VSC-HVDC line based on ST and PSO-GRNN |
|
DOI: |
中文关键词: 暂态能量和 S 变换 粒子群算法 广义神经网络 故障测距 |
英文关键词:transient energy sum S-transform particle swarm optimization generalized neural network fault location |
基金项目:国家自然科学基金(51974151)、辽宁省教育厅重点实验室项目(LJZS003)资助 |
|
|
摘要点击次数: 537 |
全文下载次数: 779 |
中文摘要: |
针对现有柔性直流输电线路接地故障的神经网络故障测距算法中,训练样本过多、训练时间较长、且未对鲁棒性提出有
效验证的问题,提出一种基于 S 变换和粒子群(PSO)算法优化广义神经网络(GRNN)的线路故障测距算法。 从故障行波能量
谱的角度出发,采用 S 变换提取故障暂态电压信号能量谱,然后对表征各频率区间的能量进行求和,以实现对能量特征样本的
准确提取;再将归一化处理后的能量样本输入神经网络进行训练,并采用 PSO 算法对 GRNN 的光滑因子进行优化,以提高网络
收敛速度和训练精度。 最后,通过电磁暂态仿真证明该方法定位精度高,不易受过渡电阻影响,在输入样本存在测量误差以及
外界噪声干扰的情况下,最大误差仍低于 1. 5%,具有一定的工程运用价值。 |
英文摘要: |
Aiming at the existing neural network fault location algorithms for ground faults on VSC-HVDC lines, there are too many
training samples, long training time, and no effective verification of robustness is proposed. A method based on ST and PSO optimizes
the line fault location algorithm of GRNN. From the perspective of the fault traveling wave energy spectrum, the ST is used to extract the
fault transient voltage signal energy spectrum, and the energy representing each frequency interval is summed to achieve accurate
extraction of the energy characteristic samples; and then normalized the subsequent energy samples and input to the neural network for
training, and the PSO algorithm is used to optimize the smoothing factor of the GRNN to improve the network convergence speed and
training accuracy. Finally, the electromagnetic transient simulation proves that the method has high positioning accuracy and is not easily
affected by the transition resistance. In the case of input samples with measurement errors and external noise interference, the maximum
error is still less than 1. 5%, which has certain engineering application value. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|