魏利胜,王宁.基于新型生物地理学优化算法的作业车间调度研究[J].电子测量与仪器学报,2020,34(3):109-118
基于新型生物地理学优化算法的作业车间调度研究
Research on job shop scheduling based on newbiogeography based optimization algorithms
  
DOI:
中文关键词:  生物地理学优化算法  作业车间调度问题  惯性权重策略  小概率扰动
英文关键词:biogeography based optimization algorithm  job shop scheduling problem  inertia weight strategy  small probability perturbation
基金项目:安徽省自然科学基金(1608085MF146)、安徽工程大学中青年拔尖人才项目(2016BJRC008)资助
作者单位
魏利胜 1.安徽工程大学电气工程学院 
王宁 1.安徽工程大学电气工程学院 
AuthorInstitution
Wei Lisheng 1.School of Electrical Engineering, Anhui Polytechnic University 
Wang Ning 1.School of Electrical Engineering, Anhui Polytechnic University 
摘要点击次数: 275
全文下载次数: 917
中文摘要:
      针对生物地理学优化算法在求解复杂作业车间调度问题时存在的问题,提出了一种改进差分进化生物地理学优化算法.通过将差分进化算法的搜索性与生物地理学优化算法的利用性有效的结合,同时采用精英保留机制保留适应度较高的个体,并且引入惯性权重策略调节变异操作在混合迁移操作中所占的比重以提高算法的全局搜索能力,然后增加了小概率扰动以防止算法随着迭代的进行陷入局部最优解.最后使用不同测试函数和作业车间调度问题进行实验,结果显示改进算法在收敛速度和优化结果方面性能更优。
英文摘要:
      Aiming at the problems of biogeography based optimization algorithm (BBO) in solving complex job shop scheduling problems (JSP), an improved differential evolution biogeography based optimization algorithm is proposed. By effectively combining the searchability of differential evolution algorithm (DE) with the utilization of biogeography based optimization algorithm, at the same time, elite retention mechanism is adopted to retain individuals with higher fitness, and inertial weight strategy is introduced to adjust the proportion of mutation operation in hybrid migration operation to improve the global search ability of the algorithm, then increase the disturbance in the small probability in order to prevent the algorithm as the iteration progressed into a local optimal solution. Finally, different test functions and job shop scheduling problems are used for experiments. The results show that the improved algorithm has better performance in convergence speed and optimization results.
查看全文  查看/发表评论  下载PDF阅读器