杨建翠,马庆功.基于非下采样Shearlet变换耦合导向法则的多聚焦图像融合算法[J].电子测量与仪器学报,2020,34(3):36-42
基于非下采样Shearlet变换耦合导向法则的多聚焦图像融合算法
Multi focus image fusion algorithm based on non-subsampled shearlet transform and guidance rule
  
DOI:
中文关键词:  NSST  导向法则  Laplacian能量特征  标准差特征  导向信息  图像融合
英文关键词:NSST  guidance rule  Laplacian energy feature  standard deviation feature  guidance information  image fusion
基金项目:国家自然科学基金(61272367)、江苏省高校自然科学基金面上项目(16KJB520001)资助
作者单位
杨建翠 1.江苏医药职业学院 
马庆功 2.常州大学 
AuthorInstitution
Yang Jiancui 1.Jiangsu Vocational College of Medicine 
Ma Qinggong 2.Changzhou University 
摘要点击次数: 319
全文下载次数: 1117
中文摘要:
      为了克服当前较多图像融合算法主要是通过取大法来完成图像系数的融合,忽略了图像间的关联性,导致融合图像中含有间断及振铃现象等缺陷,设计了基于非下采样Shearlet变换耦合导向法则的多聚焦图像融合算法。首先,引入非下采样Shearlet变换(NSST),对多聚焦图像进行计算,求取图像的不同系数。再利用图像的区域能量、标准差以及空间频率特征,对图像的关联性进行度量,并将度量结果作为选择融合规则的导向信息,通过构造导向法则来完成低频系数融合。在高频系数融合时,利用图像的均值特征以及Laplacian能量特征,分别对图像的亮度以及边缘信息进行度量,以实现高频系数的融合。以电路板与仪表盘为样本数据进行测试,结果显示,与当下融合算法相比,本文算法具有更高的融合效果,其输出图像具有更大的通用图像质量指标与平均梯度值。
英文摘要:
      In order to overcome the shortcomings of many current image fusion algorithm, such as discontinuity and ringing, which are mainly achieved by taking large image coefficients and ignoring the correlation between images, a multi focus image fusion algorithm based on non subsampled shearlet transform and guidance rule is designed in this paper. Firstly, the non down sampling Shearlet transform (NSST) is introduced to calculate the multi focus image and obtain the different coefficients of the image. Secondly, the image correlation is measured by using the regional energy, standard deviation and spatial frequency characteristics of the image, and the measurement results are used as guidance information for selecting fusion rules, and the low frequency coefficient fusion is completed by constructing guidance rules. When high frequency coefficients are fused, the brightness and edge information of the image are measured by means of the mean value feature of the image and the Laplacian energy feature, respectively, in order to achieve the fusion of high frequency coefficients. The experimental results show that, compared with the current fusion algorithm, the fusion image quality of this algorithm is better and has better fusion performance.
查看全文  查看/发表评论  下载PDF阅读器