基于LSTM-WGAN模型的柱塞-泡排复合排采系统预测控制方法
DOI:
CSTR:
作者:
作者单位:

1.西南石油大学;2.中国石油西南油气田分公司工程技术研究院;3.中国石油西南油气田分公司气田开发管理部

作者简介:

通讯作者:

中图分类号:

TP391 ????????

基金项目:

中国石油-西南石油大学创新联合体科技合作项目(2020CX020203)项目资助


LSTM-WGAN-based model predictive control method of plunger-foam compound drainage system
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高效的生产过程和智能化管理是天然气井可持续发展的关键,目前实际生产中页岩气开采仍然面临着井底积液造成气井产能下降的问题。为提高天然气井的产能和排水效率,充分利用泡沫排水采气和柱塞气举的优点,本文设计了一套“双元合一”的柱塞-泡排复合排采装置,提出了一种新颖的基于长短期记忆网络(Long Short-term Memory Networks,LSTM)和Wasserstein生成对抗网络(Generative Adversarial Networks GAN,WGAN)的复合排采LSTM-WGAN预测控制方法。利用DBSCAN对数据进行预处理,避免异常数据对模型预测的影响。通过生成器和判别器相互对抗并更新各自梯度方向的权重,不断优化使油套压差、水气比预测值逼近真值,从而准确预测下一时刻的油套压差和水气比。通过柱塞-泡排复合排采智能管理系统,实施预测的柱塞泡排投放策略。实验结果表明,LSTM-WGAN模型的误差最小,与LSTM模型相比,LSTM-WGAN模型的油套压差和水气比预测结果的均方根误差、均方误差、平均绝对误差分别降低了2.64%、5.13%、11.75%和8.81%、8.07%、6.60%。LSTM-WGAN预测模型可以准确地预测油套压差和水气比,指导柱塞-泡排复合排采系统发出正确的投放泡排球和柱塞指令,实现了泡排-柱塞的全智能化投放。

    Abstract:

    Efficient production process and smart management are key to the sustainable development of natural gas wells. At present, shale gas mining in actual production still faces the problem of liquid loading in wellbores causing the gas well production capacity to decrease. In this paper, a “dual-element integration” plunger-foam compound drainage device is designed to improve the productivity and drainage efficiency of gas wells, taking full advantages of both shale gas foam drainage and plunger drainage gas recovery systems. A novel LSTM-WGAN predictive control method based on Long short-term memory networks (LSTM) and Wasserstein generative adversarial networks GAN (WGAN) is proposed. DBSCAN is used to preprocess the data to avoid the impact of abnormal data on model prediction. The generator and the discriminator compete with each other and update the weights of their respective gradient directions, and the predicted values of oil-casing pressure difference and water-gas ratio are continuously optimized to approach the true value. This enables the model to accurately predict the oil-casing pressure difference and water-gas ratio at the next moment. The predicted plunger-foam drainage strategy is implemented through the plunger-foam drainage composite drainage intelligent management system. Compared with LSTM models, the LSTM-WGAN model reduces the root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) of the predicted oil-casing pressure difference and water-gas ratio by 2.64%, 5.13%, 11.75% and 8.81%, 8.07%, 6.60%, respectively. The experimental results demonstrate that the prediction model can accurately predict the oil-casing pressure difference and water-gas ratio data, guide the plunger-foam compound drainage system to issue correct instructions to deploy foam and plungers, and the intelligent delivery of plunger-foam is realized.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-17
  • 最后修改日期:2024-12-17
  • 录用日期:2024-12-20
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量与仪器学报》
财务封账不开票通知