非线性器件的建模与测试

Tudor Williams, Mesuro Randeep Saini, Mesuro Simon Mathias, Mesuro Andreas Henkel, Rohde & Schwarz

1引言

在快速发展、竞争激烈的非线性 设计领域,能够用最短的时间将新器 件技术转变为最终产品的能力是公司 取得成功的关键。近来发展最好的方 法是使用行为模型。此方法与相关测 试测量方案的优点相结合,可以极大 地缩短产品设计周期。本文将阐述一 种专门的测量/建模解决方案,无论是 简单的50 Ω系统级测试,还是需要波 形工程的针对任意负载阻抗的全谐波 特性描述,都可以进行表征。

2 测量基于多谐波失真(PHD) 模型

近几年,随着大量成形的商用 解决方案的发布,例如Mesuro的 Cardiff Model系列,使得非线性器件 的行为建模受到了极大的关注。

人们对此类模型的期望很高,但 是,要想从这些模型中获得最大的帮 助并准确地模拟器件的性能,就必须 充分理解模型的工作原理和适用的条 件。

3 三阶 PHD 模型

"Cardiff Model Lite" 基于三

阶多项式模型,允许在大信号情况下 扩展S参数。它采用多谐波失真(PHD) 行为模型公式(1),如图1所示。它基于 谐波叠加原理,此原理可以描述为激 励"A"波(*A_{qn}*),围绕大信号操作点 (LSOP) 进行线性映射, 实现线性化的 大信号 "B"波 (B_{pm}) 响应。

 $B_{pm} = S_{p1,m1}(DC, |A_{11}|)P^{m} \cdot |A_{11}| + \sum_{qn} S_{pq,mn}$ $(DC, |A_{11}|)P^{m} \cdot A_{qn} + \sum_{qn} T_{pq,mn}(DC, |A_{11}|)P^{m+n} \cdot A_{qn}^{*}$ (1)

图1 PHD 模型多项式

DUT首先由基波驱动,在本例中 为A₁₁。在每个基波输入功率(A₁₁)下, 也会同时在各谐波频率下加入一个小信 号对器件进行扰动(A_{qn} - 其中q表示端口 序号, n表示谐波阶数)。这可以通过网 络分析仪中的第二个源实现。此信号源 的相位通过至少6个不同的相位点进行 扫描,以使模型正确地预测器件性能。 使用Mesuro CML单元内提供的电路, 可在器件两端完成此扰动处理。因此, 对于每一个谐波分量,通过最小二乘拟 合算法应用于测量数据,可以获得相应 的模型参数S和T。

所有三阶行为模型均为局部模

型, 仅适用于特定的操作条件如阻 抗、偏差、温度等。只有正确地进行 测量,模型才能在测量范围内高度准 确的预测器件的性能,并作出正确的 外推。请注意,必须谨慎对待外推, 如果过度偏离测量的操作条件,此类 模型会返回模棱两可的结果。最好是 在I-V空间中考虑此外推过程(采用 非数学方法!)。PHD模型的提取过 程需要在器件的输入和输出端激励基 波和谐波的小信号,并且还要能够改 变相位。

为简单起见, 以基波为例, 注入 信号会导致阻抗发生变化, 测量负载

变化或"负载牵引"的示例如图2所 示。同时,利用图3所示的晶体管I-V 曲线和RF负载线, 就可以推测出图 3(a)所示的系统阻抗下的压缩特性 (标称阻抗50 Ω)。此时,改变负 载,负载线就会上下移动,从而有效 地"映射"如图3(b)所示的器件边界 特性。

据施加曲线拟合,就可以准确地对测 量数据进行建模。少量外推会产生比

模型失效的膝区"拟合"示例 图4

很明显,如果正确使用此模型, 将会是模拟器获得非线性数据的卓越方 法,同时应采用与S参数模型类似的方 法来考虑此模型。采用与S参数类似的 方法时,如果将细密网格用于频率和偏 差,则模拟器的内推将产生良好的效 果。典型应用是在系统级仿真时,对大 量的"50 Ω"器件进行串联,并分析 它们的基波和谐波特性。类似技术也可 用于负载阻抗,例如对功率晶体管建模 来设计放大器;此内容将在"Cardiff Model+"部分详细探讨。

较好的效果,但是,过多的外推会导

致模型失效,如图4所示。

4 试验布置和测量

第一阶段是将只能进行线性测量的 VNA转变为能够测量谐波相位关系的非 线性VNA。然后,将其用于重建时域波 形。此时需要相位基准在扫描VNA频 率时跟踪相位关系。Mesuro/Rohde & Schwarz方法采用经调整处理的非线性 设备,在基本频率下进行压缩测量。此 设备与使用梳状谐波发生器(基于阶跃恢 复二极管或非线性传输线)的其他商业产 品不同,可以在较高频率下驱动。由于 大部分能量集中在测量频率处,该方法 可以改善谐波分量的表征,并且在参考 器件的初始表征以及进行非线性测量时 提供更大的动态范围。

前沿技术

对于谐波模型提取,需要额外 的硬件发送和组合信号,以实现在器 件的输入和输出端进行所需的扰动测 量。Mesuro CML单元将相位基准和 信号调节硬件集于一体,可以与任何 4端口R&S ZVA矢网一起使用,并且 可覆盖的频率范围可达67 GHz。

Mesuro CML发生器的软件套件 (如图5和图6所示)可以进行非常方便 的设置和灵活测量,从而得到最佳模 型。特色功能包括:

1)器件预表征测量,让用户更好 的了解提取的关键参数:

2)相位点数的灵活性;

3)独立控制扰动信号的幅度大小, 对各谐波进行源功率校准;

4)后期分析工具可以显示实际的 负载扰动和根据测量的数据集验证模 型拟合的关键能力。

前沿技术

图7 开环谐波负载牵引示意图

5 负载牵引、波形工程和 Cardiff Model+

5.1 基于VNA的有源负载牵引架构

非线性器件不能总是只基于50 Ω

的阻抗环境,而且与线性S参数不同, 它无法将一个阻抗下测量的数据转换 为另一阻抗下测量的数据。因此,为 了获取必要的设计信息,需要对器件 在不同阻抗下的特性全部进行测试, 这导致测量集合显著增加。幸运的是 上述Cardiff Model Lite系统中的相 同"模型单元"可再次使用来实现功 能更强的系统。通过添加额外的信号 源和合路器,就可以使新系统能够在 基波和谐波频率下进行阻抗控制。然 后,通过偏置和阻抗变化,就可以利 用得到的波形深入了解DUT特性或优 化性能(波形工程)。开环有源谐波负载 牵引系统如图7所示。

开环有源负载牵引^[2](如图7所示) 是无源负载牵引技术^[3]的替代选择,

"a2"由相位同步信号源取代,反射 信号的幅度和相位也可以综合改变。 值得注意的是,每个谐波的控制需要 单独的源。

Rohde & Schwarz最新的矢量 网络分析仪能够完美地用于此方法, 全新的ZVA具有4个基于"直接数字 合成(DDS)"的源。这在许多方面都 可以带来很大的好处。首先,在同时 执行基次、二次和三次谐波负载牵引 时,可以提供足够的源来驱动器件。 此外,多个DDS源之间不会随着时间 出现相位的相对漂移。

如图8所示的DDS合成器中, 调谐控制字定义相位变化的梯度 以及DDS的频率。正弦波查找表 将相位值重新转换为数字幅度值, 例如,对于16位控制字,可以从0 到65536。再由D/A转换器得到正 弦波;然后使用抗混叠低通滤波器 滤波。此正弦波被用作鉴相器的 参考信号。然后,PLL(锁相环)将 VCO(压控振荡器)的相位与参考信号 锁定起来。这样就可以通过DDS信 号设置VCO频率。

与采用模拟的PLL设计相比,此 类源具有许多优势,包括改善相位噪 声,提高频率捷变速度以及精确控制 输出相位和频率等。由于用于下变频 的本地振荡器和所有内部源均由R&S ZVA的同一个数字时钟驱动,因此, 测量信号几乎没有漂移现象。

文献[4]对此在24小时周期内进行了 测试和验证展示,主要有2个优点;1)它 允许以更高的频率进行有源负载牵引, 使用模拟PLL的源之间会产生漂移从而 使有源负载牵引方法变得不可行。在 基于R&S ZVA的方案中,Mesuro已实 现频率高达60 GHz的精确有源负载牵 引。2)由于LO也与信号发生器锁定在一 起,可以实现不同扫描之间非常稳定的 相位关系,从而使重构出来的波形不随 时间发生变化。这意味着只需要在校准 期间对相位基准进行确认,就允许在有 源谐波负载牵引时使用ZVA所有的源。

5.2 有源负载牵引和波形工程的 好处

上述有源负载牵引方法有很多好

处,包括能够在史密斯圆图内外控制 阻抗,减少系统占用面积并提高测试 速度。最近发表的文献[5]表明,使用 相同的测量仪器和设置时,可将100 点负载网格的测试时间减少7倍,即 从4.5 min缩短到只有41 s。该论文 还展示了获得专利的准闭环架构,其 在测量速度极其重要的情况下大有帮 助,例如在生产环境中。此架构保持 了开环方法的系统稳定性,同时进一步提高速度,相同的负载牵引测试时间缩短为只有18.5 s。

前沿技术

对于希望不仅仅改善负载牵引性 能的人士来说,该系统也可用于测量 和设计器件的时域电压和电流波形。 此方法可以为设计师提供非常有价值 的器件特性视角。波形工程主要有2个 应用方向^[6]:1)工艺开发方面,波形工 程可用于确定工艺问题的根源^[7];2)应 用是优化器件特性,无需迭代就能实 现最好的设计^[8-9]。

5.2.1 器件特性退化

此案例^[7]将说明使用波形工程来 分析出现特性退化的GaN HFET器 件,通过结合RF和DC测量来分析问 题的根本原因。图9所示为通过输出 电流波形(叠加100个波形)观察到的 退化现象,原始波形显示为红色, 最终波形显示为蓝色。

图9 显示退化的输出电流波形

峰值电流明显减小,导致输出 功率和效率降低。接下来进行应力 测试,要完成此测试,首先在加电 开启时进行DC和RF测量,然后在 90 min后再次进行DC和RF测量。 图10所示为叠加RF负载线(根据输出 电流绘制输出电压而形成)的DCIV 曲线,红色是初始时的测试值,应 力测试后,在RF负载线和DCIV曲线 中均可看出退化。

前沿技术

使用波形工程,可以只在器件 的部分IV区域进行表征。例如,通过 将器件偏置在低漏极电压和高静态电 流的工作状态,然后限制输入功率, 就可以只表征IV曲线的高电流区域, 如图11所示。相反地,通过将器件偏 置在较高的漏极电压和低静态电流状 态,可以只表征IV特性的高电压区 域,如图12所示。在这两种情况下, 尽管保持RF输入功率不变,但是看一 下DCIV曲线,可以清楚的看到器件 退化是由高电压区域内的强电场造成 的,而不是高电流产生的热效应造成 的。了解这方面的信息后,工艺开发 团队就可以定位问题所在,及时解决 问题。

图11 只有高电流激励的应力测试

5.2.2 Cardiff Model+

上面已经展示了波形工程的重 要作用,本部分将说明如何利用更加 高级的行为模型将设计过程移回到仿 真器中。虽然行为建模技术(例如 X-Parameters[™])可以解决阻抗的问 题,但对于每一个阻抗点,都需要创 建大量的非线性模型数据,同时还需 要在仿真器中进行大量的内插。相反 地,Cardiff Model+多项式,尽管也 是从PHD模型多项式衍生而来,却能 够扩展多项式的阶数,使单个模型就 可适用于所有阻抗情况^[10]。这样可以 显著减小模型文件的大小。

5.2.3 案例研究 - Cardiff Model+

本案例展示了一个0.5W pHEMT 器件在9 GHz建模的过程和结果。在 本例中,模型只针对谐波阻抗的一些 固定集合,但也可根据需要包含在多 项式中。一旦完成负载牵引测量,创 建模型的过程就变得非常简单,将测 试数据加载到模型生成软件,选择相 应的模型类型,在本例中只选择基本 模型,然后导出模型。模型文件还 可以导出为适合ADS或Microwave Office软件使用的格式,如图13所 示。

一旦模型完成,就可在模型生成 器中直接验证结果。导出的模型可在 CAD环境中使用,如图14所示,而且

可以进行传统的功率和效率分析以及执行波形工程。

图14 在 Microwave Office 中运行的 Cardiff Model+

图15和16分别展示了建模和测量 的负载牵引测试圆图和波形的对比, 说明模型准确预测器件在不同阻抗性 能的能力。

6 结 论

本文展示了如何将VNA技术的发 展与非线性测量解决方案的发展相结 合,以使新器件和集成非线性器件模 块的设计流程实现简单化。介绍并探 讨了Cardiff Model Lite这一简单的行 为模型及其作为基本模型的限制。还 介绍了根据Rohde & Schwarz VNA 最新技术开发的最先进的测量系统, 说明了如何使用有源负载牵引改善负 载牵引平台的性能。接下来,通过工 艺开发和大功率放大器设计方面的案

前沿技术

前沿技术

例研究,介绍了波形工程。最后介绍 了更加高级的行为模型多项式Cardiff Model+,允许用户将波形工程方法完 全嵌入到仿真环境中。

参考文献

- [1] VERSPECHT J, ROOT DE. Poly-harmonic distortion modeling[J]. IEEE microwave magazine,2006,7(3):44-57.
- [2] TAKAYAMA Y. A new loadpull characterization method for microwave power transistors[J].
 MTT-S International Microwave Symposium Digest 1976, 1976,76(1):218-220
- [3] Technical data sheet 4T-070 maury microwave. High-Gamma Automated Tuners (HGTTM)[Z].
- [4] ALDOUMANI A, TASKER PJ, Saini R S, et al. Operation and calibration of a VNA-

based large signal RF I-V waveform measurement system without using a harmonic phase reference standard[C]. 81st ARFTG microwave measurement conference, 2013:1-4.

- [5] WILLIAMS T, WEE B, SAINT R, et al. A digital, PXIbased active load-pull tuner to maximise throughput of a load-pull test bench[C]. 83rd ARFTG microwave measurement conference, 2014:1-4.
- [6] TASKER P. Practical waveform engineering[J]. IEEE Microwave Magazine, 2009,10(7):65-76.
- [7] ROFF C J. Application of waveform engineering to GaN HFET characterisation and class F design[D]. University of Wales Cardiff, 2009.

- [8] IWATA M, KAMIYAMA T, UNO T, et al. First pass design of a high power 145W, high efficiency class j amplifier using waveform engineering[C]. IEEE Topical Conference on Power Amplifiers for Wireless and Radio Application, 2013:7-9.
- [9] WRIGHT P, LEES J, BENEDIKT J, et al. A methodology realizing for high efficiency class-j in a linear and broadband PA[J]. IEEE Transactions on Microwave Theory and Techniques, 2009,57(12):3196-3204.
- [10] WOODINGTON S, SAINI R, WILLIAMS D, et al.Behavioral model analysis of active harmonic load-pull measurements[C]. Microwave Symposium Digest, 2010:1688-1691.